in

Bat aggregational response to pest caterpillar emergence

  • 1.

    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18(1), 1–35 (1949).

    Article 

    Google Scholar 

  • 2.

    Sinclair, A. R. E. & Krebs, C. J. Complex numerical responses to top–down and bottom–up processes in vertebrate populations. Philos. Trans. R. Soc. B 357(1425), 1221–1231 (2002).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Readshaw, J. L. The numerical response of predators to prey density. J. Appl. Biol. 10, 342–351 (1973).

    Google Scholar 

  • 4.

    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332(6025), 41–42 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services—a review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381 (2018).

    Article 

    Google Scholar 

  • 6.

    Kunz, T. H., BraundeTorrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Russo, D., Bosso, L. & Ancillotto, L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: Research frontiers and management implications. Agric. Ecosyst. Environ. 266, 31–38 (2018).

    Article 

    Google Scholar 

  • 8.

    Boyles, J. G., Sole, C. L., Cryan, P. M. & McCracken, G. F. On estimating the economic value of insectivorous bats: prospects and priorities for biologists. In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 501–515 (Springer, 2013).

    Chapter 

    Google Scholar 

  • 9.

    Kemp, J. et al. Bats as potential suppressors of multiple agricultural pests: a case study from Madagascar. Agric. Ecosyst. Environ. 269, 88–96 (2019).

    Article 

    Google Scholar 

  • 10.

    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10(1), 371–388 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Weier, S. M. et al. Insect pest consumption by bats in macadamia orchards established by molecular diet analyses. Glob. Ecol. Conserv. 18, e00626 (2019).

    Article 

    Google Scholar 

  • 12.

    Bohmann, K. et al. Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6(6), e21441 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Razgour, O. et al. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol. Evol. 1(4), 556–570 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4(5), 238–243 (2006).

    Article 

    Google Scholar 

  • 15.

    McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7(8), e43839 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. 91(4), 1081–1101 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. USA 112(40), 12438–12443 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Hill, D. S. Pests of Crops in Warmer Climates and Their Control (Springer, 2008).

    Book 

    Google Scholar 

  • 19.

    Zhang, B. C. Index of Economically Important Lepidoptera (CAB International, Wallingford, 1994).

    Google Scholar 

  • 20.

    Riccucci, M. & Lanza, B. Bats and insect pest control: a review. Vespertilio 17, 161–169 (2014).

    Google Scholar 

  • 21.

    Andreas, M., Reiter, A. & Benda, P. Dietary composition, resource partitioning and trophic niche overlap in three forest foliage-gleaning bats in Central Europe. Acta Chiropterol. 14(2), 335–345 (2012).

    Article 

    Google Scholar 

  • 22.

    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Hope, R. P. et al. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Front. Zool. 11, 39 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Pray oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).

    Article 

    Google Scholar 

  • 25.

    Garin, I. et al. Bats from different foraging guilds prey upon the pine processionary moth. PeerJ 7, e7169 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245 (2015).

    Article 

    Google Scholar 

  • 27.

    Elgar, M. A. Predator vigilance and group size in mammals and birds: a critical review of the evidence. Biol. Rev. 64, 13–33 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75(6), 1252–1258 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Partridge, D. R., Parkins, K. L., Elbin, S. B. & Clark, J. A. Bat activity correlates with moth abundance on an urban green roof. Northeast Nat. 27(1), 77–89 (2020).

    Article 

    Google Scholar 

  • 30.

    Charbonnier, Y., Barbaro, L., Theillout, A. & Jactel, H. Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE 9(10), e109488 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Krauel, J. J., Ratcliffe, J. M., Westbrook, J. K. & McCracken, G. F. Brazilian free-tailed bats (Tadarida brasiliensis) adjust foraging behaviour in response to migratory moths. Can. J. Zool. 96(6), 513–520 (2018).

    Article 

    Google Scholar 

  • 32.

    Gregor, F. & Bauerová, Z. The role of Diptera in the diet of Natterer’s bat, Myotis nattereri. Folia. Zool. 36(1), 13–19 (1987).

    Google Scholar 

  • 33.

    Swift, S. & Racey, P. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav. Ecol. Sociobiol. 52(5), 408–416 (2002).

    Article 

    Google Scholar 

  • 34.

    Taake, K. H. Resource utilization strategies of vespertilionid bats hunting over water in forests. Myotis 30, 7–74 (1992).

    Google Scholar 

  • 35.

    Vaughan, N. The diets of British bats (Chiroptera). Mammal. Rev. 27(2), 77–94 (1997).

    Article 

    Google Scholar 

  • 36.

    Siemers, B. & Swift, S. M. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 59, 373–380 (2006).

    Article 

    Google Scholar 

  • 37.

    Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight Performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B 316(1179), 335–427 (1987).

    ADS 

    Google Scholar 

  • 38.

    Entwistle, A. C., Racey, P. A. & Speakman, J. R. Habitat exploitation by a gleaning bat, Plecotus auritus. Philos. Trans. R. Soc. B 351(1342), 921–931 (1996).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Kerth, G., Wagner, M. & König, B. Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav. Ecol. Sociobiol. 50, 283–291 (2001).

    Article 

    Google Scholar 

  • 40.

    Rydell, J. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Holarct. Ecol. 12(1), 16–20 (1989).

    Google Scholar 

  • 41.

    Anderson, M. E. & Racey, P. A. Feeding behaviour of captive brown long-eared bats, Plecotus auritus. Anim. Behav. 42(3), 489–493 (1991).

    Article 

    Google Scholar 

  • 42.

    Andreas, M. Feeding ecology of a bat community. Ph.D. Thesis, Czech Agriculture University, Prague (2002).

  • 43.

    Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. Forest. Res. 124, 319–333 (2005).

    Article 

    Google Scholar 

  • 44.

    Keena, M. A., Côté, M. J., Grinberg, P. S. & Wallner, W. E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 37(3), 636–649 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Melin, M., Viiri, H., Tikkanen, O. P., Elfving, R. & Neuvonen, S. From a rare inhabitant into a potential pest—status of the nun moth in Finland based on pheromone trapping. Silva. Fenn. 54(1), 1–9 (2020).

    Article 

    Google Scholar 

  • 46.

    Kuhlman, H. M. Effects of insect defoliation on growth and mortality of trees. Annu. Rev. Entomol. 16, 289–324 (1971).

    Article 

    Google Scholar 

  • 47.

    Bogacheva, I. A. Repeated damage of leaves by phyllophagous insects: is it influenced by rapid inducible resistance? In Forest Insect Guilds: Patterns of Interaction with Host Trees. (eds. Baranchikov, Y.N., Mattson, W.J., Hain, F.P. & Payne, T.L.) 113–122 (U.S. Dep. Agric. For. Serv. Gen. Tech. Rep. NE-153, 1991).

  • 48.

    Zvereva, E. L. & Kozlov, M. V. Effects of herbivory on leaf life span in woody plants: a meta-analysis. J. Ecol. 102(4), 873–881 (2014).

    Article 

    Google Scholar 

  • 49.

    Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).

    Article 

    Google Scholar 

  • 50.

    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Delb, H. Eichenschädlinge im Klimawandel in Südwestdeutschland. FVA-einblick. 2/2012, 11–14 (2012).

  • 52.

    Hittenbeck, A., Bialozyt, R. & Schmidt, M. Modelling the population fluctuation of winter moth and mottled umber moth in central and northern Germany. For. Ecosyst. 6, 4 (2019).

    Article 

    Google Scholar 

  • 53.

    Ims, R. A., Yoccoz, N. G. & Hagen, S. B. Do sub-Arctic winter moth populations in coastal birch forest exhibit spatially synchronous dynamics?. J. Anim. Ecol. 73, 1129–1136 (2004).

    Article 

    Google Scholar 

  • 54.

    Böhm, S. M., Wells, K. & Kalko, E. K. V. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS ONE 6(4), e17857 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Patočka, J. Caterpillars on oaks in Czechoslovakia. (Štátne pôdohospodárske nakladateľstvo: 262, 1954).

  • 56.

    Hausmann, A. The geometrid moths of Europe, Volume 1: Introduction, Archiearinae, Orthostixinae, Desmobathrinae, Alsophilinae, Geometrinae, (Apollo Books, 2001).

  • 57.

    Zahradník, P. Calamities in Czech forests—past and present. In: Facts and myths about Czech agricultural forestry. Proceedings of papers (ed Stonawski, J.) 31–51 (Česká zemědělská univerzita, 2008).

  • 58.

    Macek, J., Procházka, J. & Traxler, L. Butterflies and caterpillars of Central Europe: Moths III. – Geometrids. (Academia, 2012).

  • 59.

    Liška, J. Winter moth, Operophtera brumata L. Lesnická Práce, 11: I–IV (2002).

  • 60.

    Basset, Y., Springate, N. D., Aberlenc, H. P. & Delvare, G. A review of methods for sampling arthropods in tree canopies. In Canopy Arthropods (eds Stork, N. E. et al.) 567 (Chapman & Hall, 1997).

    Google Scholar 

  • 61.

    Kimber, I. UKMOTHS. https://ukmoths.org.uk (2015).

  • 62.

    Bartonička, T., Miketová, N. & Hulva, P. High throughput bioacoustic monitoring and phenology of the greater noctule bat (Nyctalus lasiopterus) compared to other migratory species. Acta Chiropterol. 21(1), 75–85 (2019).

    Article 

    Google Scholar 

  • 63.

    Lemen, C., Freeman, P. W., White, J. A. & Andersen, B. R. The problem of low agreement among automated identification programs for acoustical surveys of bats. West. N. Am. Naturalist. 75(2), 218–225 (2015).

    Article 

    Google Scholar 

  • 64.

    Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behaviour (Biotope & National Museum of Natural History, 2015).

  • 65.

    McAney, C., Shiel, C., Sullivan, C. & Fairley, J. The analysis of bat droppings (An occasional publication of the Mammal society; no. 14, 1991).

  • 66.

    Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11(2), 23–44 (2011).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).

    Google Scholar 

  • 69.

    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 35, 21–25 (2007).

    Article 

    Google Scholar 

  • 70.

    R Core Team. R: language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/ (2019).


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans