Gill, A. et al. Review of the state of knowledge on verotoxigenic Escherichia coli and the role of whole genome sequencing as an emerging technology supporting regulatory food safety in Canada. (2020).
Thorpe, C. M. Shiga toxin-producing Escherichia coli infection. Clin. Infect. Dis. 38, 1298–1303 (2004).
Google Scholar
Valilis, E., Ramsey, A., Sidiq, S. & DuPont, H. L. Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: systematic review. Int. J. Infect. Dis. 76, 82–87 (2018).
Google Scholar
Karmali, M. A., Steele, B. T., Petric, M. & Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1, 619–620 (1983).
Google Scholar
O’Brien, A. O., Lively, T. A., Chen, M. E., Rothman, S. W. & Formal, S. B. Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet 1, 702 (1983).
Google Scholar
Gill, A. & Gill, C. O. Non-O157 verotoxigenic Escherichia coli and beef: a Canadian perspective. Can. J. Vet. Res 74, 161–169 (2010).
Google Scholar
Heiman, K. E., Mody, R. K., Johnson, S. D., Griffin, P. M. & Gould, L. H. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 21, 1293–1301 (2015).
Google Scholar
Callaway, T. R., Carr, M. A., Edrington, T. S., Anderson, R. C. & Nisbet, D. J. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Curr. Issues Mol. Biol. 11, 67–79 (2009).
Google Scholar
Tseng, M., Fratamico, P. M., Manning, S. D. & Funk, J. A. Shiga toxin-producing Escherichia coli in swine: the public health perspective. Anim. Health Res. Rev. 15, 63–75 (2014).
Google Scholar
Waddell, T. E., Coomber, B. L. & Gyles, C. L. Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can. J. Vet. Res. 62, 81–86 (1998).
Google Scholar
Omer, M. K. et al. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog. Dis. 15, 598–611 (2018).
Google Scholar
Honish, L. et al. Escherichia coli O157:H7 infections associated with contaminated pork products – Alberta, Canada, July–October 2014. Mmwr. Morbidity Mortal. Wkly. Rep. 65, 1477–1481 (2017).
Google Scholar
AHS. E. coli outbreak linked to certain pork products in Alberta declared over, https://www.albertahealthservices.ca/news/releases/2018/Page14457.aspx (2018).
News, F. S. Alberta outbreak prompts raw pork and pork organ recall, https://www.foodsafetynews.com/2016/02/alberta-e-coli-outbreak-prompts-raw-pork-and-pork-organ-recall/ (2016).
Essendoubi, S. et al. Prevalence and characterization of Escherichia coli O157:H7 on pork carcasses and in swine colon content from provincially-licensed abattoirs in Alberta, Canada. J Food Prot, (2020).
Colello, R. et al. From farm to table: follow-up of Shiga toxin-producing Escherichia coli throughout the pork production chain in Argentina. Front Microbiol. 7, 93 (2016).
Google Scholar
Tseng, M., Fratamico, P. M., Bagi, L., Manzinger, D. & Funk, J. A. Shiga toxin-producing E. coli (STEC) in swine: prevalence over the finishing period and characteristics of the STEC isolates. Epidemiol. Infect. 143, 505–514 (2015).
Google Scholar
Rajkhowa, S. & Sarma, D. K. Prevalence and antimicrobial resistance of porcine O157 and non-O157 Shiga toxin-producing Escherichia coli from India. Trop. Anim. Health Prod. 46, 931–937 (2014).
Google Scholar
Meng, Q. et al. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol 14, 5 (2014).
Google Scholar
Ho, W. S., Tan, L. K., Ooi, P. T., Yeo, C. C. & Thong, K. L. Prevalence and characterization of verotoxigenic-Escherichia coli isolates from pigs in Malaysia. BMC Vet. Res. 9, 109 (2013).
Google Scholar
Choi, Y. M. et al. Changes in microbial contamination levels of porcine carcasses and fresh pork in slaughterhouses, processing lines, retail outlets, and local markets by commercial distribution. Res. Vet. Sci. 94, 413–418 (2013).
Google Scholar
Farzan, A., Friendship, R. M., Cook, A. & Pollari, F. Occurrence of Salmonella, Campylobacter, Yersinia enterocolitica, Escherichia coli O157 and Listeria monocytogenes in swine. Zoonoses Public Health 57, 388–396 (2010).
Google Scholar
Lenahan, M. et al. The potential use of chilling to control the growth of Enterobacteriaceae on porcine carcasses and the incidence of E. coli O157:H7 in pigs. J. Appl. Microbiol. 106, 1512–1520 (2009).
Google Scholar
Milnes, A. S. et al. Factors related to the carriage of Verocytotoxigenic E. coli, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica in cattle, sheep and pigs at slaughter. Epidemiol. Infect. 137, 1135–1148 (2009).
Google Scholar
Kaufmann, M. et al. Escherichia coli O157 and non-O157 Shiga toxin-producing Escherichia coli in fecal samples of finished pigs at slaughter in Switzerland. J. Food Prot. 69, 260–266 (2006).
Google Scholar
Fratamico, P. M., Bagi, L. K., Bush, E. J. & Solow, B. T. Prevalence and characterization of Shiga toxin-producing Escherichia coli in swine feces recovered in the National Animal Health Monitoring System’s Swine 2000 study. Appl Environ. Microbiol 70, 7173–7178 (2004).
Google Scholar
Bonardi, S. et al. Detection of Salmonella spp., Yersinia enterocolitica and verocytotoxin-producing Escherichia coli O157 in pigs at slaughter in Italy. Int J. Food Microbiol 85, 101–110 (2003).
Google Scholar
Eriksson, E., Nerbrink, E., Borch, E., Aspan, A. & Gunnarsson, A. Verocytotoxin-producing Escherichia coli O157:H7 in the Swedish pig population. Vet. Rec. 152, 712–717 (2003).
Google Scholar
Feder, I. et al. Isolation of Escherichia coli O157:H7 from intact colon fecal samples of swine. Emerg. Infect. Dis. 9, 380–383 (2003).
Google Scholar
Johnsen, G., Wasteson, Y., Heir, E., Berget, O. I. & Herikstad, H. Escherichia coli O157:H7 in faeces from cattle, sheep and pigs in the southwest part of Norway during 1998 and 1999. Int J. Food Microbiol 65, 193–200 (2001).
Google Scholar
Leung, P. H., Yam, W. C., Ng, W. W. & Peiris, J. S. The prevalence and characterization of verotoxin-producing Escherichia coli isolated from cattle and pigs in an abattoir in Hong Kong. Epidemiol. Infect. 126, 173–179 (2001).
Google Scholar
Nakazawa, M. & Akiba, M. Swine as a potential reservoir of Shiga toxin-producing Escherichia coli O157:H7 in Japan. Emerg. Infect. Dis. 5, 833–834 (1999).
Google Scholar
Chapman, P. A., Siddons, C. A., Gerdan Malo, A. T. & Harkin, M. A. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol. Infect. 119, 245–250 (1997).
Google Scholar
Tang, S. et al. Assessment and comparison of molecular subtyping and characterization methods for Salmonella. Front Microbiol. 10, 1591 (2019).
Google Scholar
Schurch, A. C., Arredondo-Alonso, S., Willems, R. J. L. & Goering, R. V. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol Infect. 24, 350–354 (2018).
Google Scholar
McNally, A. et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet. 12, e1006280 (2016).
Google Scholar
Kaas, R. S., Friis, C., Ussery, D. W. & Aarestrup, F. M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13, 577 (2012).
Google Scholar
Rusconi, B. et al. Whole genome sequencing for genomics-guided investigations of Escherichia coli O157:H7 outbreaks. Front Microbiol 7, 985 (2016).
Google Scholar
Rumore, J. et al. Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic Escherichia coli O157:H7 from the Canadian perspective. BMC Genomics 19, 870 (2018).
Google Scholar
Manning, S. D. et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl Acad. Sci. USA 105, 4868–4873 (2008).
Google Scholar
Yang, Z. et al. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ. Microbiol. 70, 6846–6854 (2004).
Google Scholar
Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ. Microbiol Rep. 5, 58–65 (2013).
Google Scholar
Latif, H., Li, H. J., Charusanti, P., Palsson, B. O. & Aziz, R. K. A gapless, unambiguous genome sequence of the enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Genome Announc. 2, e00821-14 (2014).
Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40, (1962).
Pightling, A. W. et al. Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations. Front Microbiol. 9, 1482 (2018).
Google Scholar
Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic acids Res. 43, D261–269 (2015).
Google Scholar
Batisson, I. et al. Characterization of the novel factor paa involved in the early steps of the adhesion mechanism of attaching and effacing Escherichia coli. Infect. Immun. 71, 4516–4525 (2003).
Google Scholar
Tatsuno, I. et al. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69, 6660–6669 (2001).
Google Scholar
Wells, T. J. et al. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. Environ. Microbiol. 10, 589–604 (2008).
Google Scholar
Paton, A. W., Srimanote, P., Woodrow, M. C. & Paton, J. C. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69, 6999–7009 (2001).
Google Scholar
Galli, L., Torres, A. G. & Rivas, M. Identification of the long polar fimbriae gene variants in the locus of enterocyte effacement-negative Shiga toxin-producing Escherichia coli strains isolated from humans and cattle in Argentina. FEMS Microbiol Lett. 308, 123–129 (2010).
Google Scholar
Tarr, P. I. et al. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 68, 1400–1407 (2000).
Google Scholar
Stanley, P., Koronakis, V. & Hughes, C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol. Biol. Rev. 62, 309–333 (1998).
Google Scholar
Veilleux, S. & Dubreuil, J. D. Presence of Escherichia coli carrying the EAST1 toxin gene in farm animals. Vet. Res 37, 3–13 (2006).
Google Scholar
Savarino, S. J. et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc. Natl Acad. Sci. USA 90, 3093–3097 (1993).
Google Scholar
Paton, A. W., Srimanote, P., Talbot, U. M., Wang, H. & Paton, J. C. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J. Exp. Med 200, 35–46 (2004).
Google Scholar
Thomas, C. M. & Summers, D. Encyclopedia of life sciences. (John Wiley & Sons, Ltd, 2008).
Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).
Google Scholar
Lim, J. Y., Yoon, J. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol Biotechnol. 20, 5–14 (2010).
Google Scholar
Kim, J. Y. et al. Isolation and identification of Escherichia coli O157:H7 using different detection methods and molecular determination by multiplex PCR and RAPD. J. Vet. Sci. 6, 7–19 (2005).
Google Scholar
Jaros, P. et al. Geographic divergence of bovine and human Shiga toxin–producing Escherichia coli O157: H7 genotypes. NZ 20, 1980 (2014).
Google Scholar
Mellor, G. E. et al. Geographically distinct Escherichia coli O157 isolates differ by lineage, Shiga toxin genotype, and total shiga toxin production. J. Clin. Micro. 53, 579–586 (2015).
Google Scholar
Pianciola, L. & Rivas, M. Genotypic features of clinical and bovine Escherichia coli O157 strains isolated in countries with different associated-disease incidences. Microorganisms 6, 36 (2018).
Strachan, N. J. et al. Whole genome sequencing demonstrates that geographic variation of Escherichia coli O157 genotypes dominates host association. Sci. Rep. 5, 14145 (2015).
Google Scholar
Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 (2009).
Google Scholar
Wochtl, B. et al. Comparison of clinical and immunological findings in gnotobiotic piglets infected with Escherichia coli O104:H4 outbreak strain and EHEC O157:H7. Gut Pathog. 9, 30 (2017).
Google Scholar
Booher, S. L., Cornick, N. A. & Moon, H. W. Persistence of Escherichia coli O157:H7 in experimentally infected swine. Vet. Microbiol. 89, 69–81 (2002).
Google Scholar
Moxley, R. A. Edema disease. Vet. Clin. North Am. Food Anim. Pr. 16, 175–185 (2000).
Google Scholar
Melton-Celsa, A. R. Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr. 2, EHEC-0024-2013 (2014).
Google Scholar
Fuller, C. A., Pellino, C. A., Flagler, M. J., Strasser, J. E. & Weiss, A. A. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 79, 1329–1337 (2011).
Google Scholar
Tesh, V. L. et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61, 3392–3402 (1993).
Google Scholar
Tarr, G. A. M. et al. Contribution and interaction of Shiga toxin genes to Escherichia coli O157:H7 virulence. Toxins (Basel) 11, 607 (2019).
Google Scholar
Chui, L. et al. Molecular profiling of Escherichia coli O157:H7 and non-O157 strains isolated from humans and cattle in Alberta, Canada. J. Clin. Microbiol. 53, 986–990 (2015).
Google Scholar
Goma, M. K. E., Indraswari, A., Haryanto, A. & Widiasih, D. A. Detection of Escherichia coli O157:H7 and Shiga toxin 2a gene in pork, pig feces, and clean water at Jagalan slaughterhouse in Surakarta, Central Java Province, Indonesia. Vet. World 12, 1584–1590 (2019).
Google Scholar
Baranzoni, G. M. et al. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli. Front Microbiol. 7, 574 (2016).
Google Scholar
Mohlatlole, R. P. et al. Virulence profiles of enterotoxigenic, Shiga toxin and enteroaggregative Escherichia coli in South African pigs. Trop. Anim. Health Prod. 45, 1399–1405 (2013).
Google Scholar
Blanco, M. et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi). J. Clin. Microbiol. 42, 645–651 (2004).
Google Scholar
Kobayashi, N. et al. Virulence gene profiles and population genetic analysis for exploration of pathogenic serogroups of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 51, 4022–4028 (2013).
Google Scholar
Meng, J., Zhao, S. & Doyle, M. P. Virulence genes of Shiga toxin-producing Escherichia coli isolated from food, animals and humans. Int J. Food Microbiol 45, 229–235 (1998).
Google Scholar
Mora, A. et al. Phage types, virulence genes and PFGE profiles of Shiga toxin-producing Escherichia coli O157:H7 isolated from raw beef, soft cheese and vegetables in Lima (Peru). Int J. Food Microbiol. 114, 204–210 (2007).
Google Scholar
Sallam, K. I., Mohammed, M. A., Ahdy, A. M. & Tamura, T. Prevalence, genetic characterization and virulence genes of sorbitol-fermenting Escherichia coli O157:H- and E. coli O157:H7 isolated from retail beef. Int J. Food Microbiol 165, 295–301 (2013).
Google Scholar
Solomakos, N. et al. Occurrence, virulence genes and antibiotic resistance of Escherichia coli O157 isolated from raw bovine, caprine and ovine milk in Greece. Food Microbiol. 26, 865–871 (2009).
Google Scholar
Tóth, I. et al. Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle. Appl. Environ. Microbiol. 75, 6282 (2009).
Google Scholar
Rao, S. et al. Antimicrobial drug use and antimicrobial resistance in enteric bacteria among cattle from Alberta feedlots. Foodborne Pathog. Dis. 7, 449–457 (2010).
Google Scholar
Benedict, K. M. et al. Antimicrobial resistance in Escherichia coli recovered from feedlot fattle and associations with antimicrobial use. PLoS ONE 10, e0143995 (2015).
Google Scholar
Stanford, K., Johnson, R. P., Alexander, T. W., McAllister, T. A. & Reuter, T. Influence of season and feedlot location on prevalence and virulence factors of seven serogroups of Escherichia coli in feces of western-Canadian slaughter cattle. PLoS ONE 11, e0159866 (2016).
Google Scholar
Mercer, R. G. et al. Genetic determinants of heat resistance in Escherichia coli. Front Microbiol. 6, 932 (2015).
Google Scholar
Stanford, K. et al. Monitoring Escherichia coli O157:H7 in inoculated and naturally colonized feedlot cattle and their environment. J. Food Prot. 68, 26–33 (2005).
Google Scholar
Munns, K. D. et al. Comparative genomic analysis of Escherichia coli O157:H7 isolated from super-shedder and low-shedder cattle. PLoS ONE 11, e0151673 (2016).
Google Scholar
Bach, S. J. et al. Electrolyzed oxidizing anode water as a sanitizer for use in abattoirs. J. Food Prot. 69, 1616–1622 (2006).
Google Scholar
Stanford, K., Gibb, D. & McAllister, T. A. Evaluation of a shelf-stable direct-fed microbial for control of Escherichia coli O157 in commercial feedlot cattle. Can. J. Anim. Sci. 93, 535–542 (2013).
Google Scholar
Stanford, K., Hannon, S., Booker, C. W. & Jim, G. K. Variable efficacy of a vaccine and direct-fed microbial for controlling Escherichia coli O157:H7 in feces and on hides of feedlot cattle. Foodborne Pathog. Dis. 11, 379–387 (2014).
Google Scholar
Berenger, B. M. et al. The utility of multiple molecular methods including whole genome sequencing as tools to differentiate Escherichia coli O157:H7 outbreaks. Euro Surveill. 20, 30073 (2015).
Stephens, T. P., McAllister, T. A. & Stanford, K. Perineal swabs reveal effect of super shedders on the transmission of Escherichia coli O157:H7 in commercial feedlots. J. Anim. Sci. 87, 4151–4160 (2009).
Google Scholar
Zhang, P. et al. Genome sequences of 104 Escherichia coli O157:H7 isolates from pigs, cattle, and pork production environments in Alberta, Canada. Microbiol. Resour. Announc. 10, (2021).
Riordan, J. T., Viswanath, S. B., Manning, S. D. & Whittam, T. S. Genetic differentiation of Escherichia coli O157:H7 clades associated with human disease by real-time PCR. J. Clin. Microbiol. 46, 2070–2073 (2008).
Google Scholar
Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15–e15 (2014).
Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinforma. (Oxf., Engl.) 30, 1312–1313 (2014).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic acids Res. 47, W256–W259 (2019).
Google Scholar
Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96 (2020).
Google Scholar
Silva, M. et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Micro. Genom. 4, e000166 (2018).
Zhou, Z. et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 28, 1395–1404 (2018).
Google Scholar
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxf., Engl.) 30, 2068–2069 (2014).
Google Scholar
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics (Oxf., Engl.) 31, 3691–3693 (2015).
Google Scholar
Zhang, P., Gänzle, M. & Yang, X. Complementary antibacterial effects of bacteriocins and organic acids as revealed by comparative analysis of Carnobacterium spp. from meat. Appl. Environ. Microbiol. 85, e01227-19 (2019).
Zheng, J., Zhao, X., Lin, X. B. & Ganzle, M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci. Rep. 5, 18234 (2015).
Google Scholar
Schliep, K., Potts, A. J., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8, 1212–1220 (2017).
Google Scholar
Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).
Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).
Source: Ecology - nature.com