Geber, W. F. & Schramm, L. C. Effect of marihuana extract on fetal hamsters and rabbits. Toxicol. Appl. Pharmacol. 14, 276–282 (1969).
Google Scholar
Geber, W. F. & Schramm, L. C. Teratogenicity of marihuana extract as influenced by plant origin and seasonal variation. Arch. Int. Pharmacodyn. Ther. 177, 224–230 (1969).
Google Scholar
Graham, J. D. P. Cannabis and health. In Cannabis and Health Vol. 1 (ed. Graham, J. D. P.) 271–320 (Academic Press, 1976).
Reece, A. S. & Hulse, G. K. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat. Res. 789, 15–25 (2016).
Google Scholar
Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of Cannabinoids on spermatogenesis in mice. In Marihuana and Medicine (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).
Google Scholar
Morishima, A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res. Monogr. 44, 25–45 (1984).
Google Scholar
Henrich, R. T., Nogawa, T. & Morishima, A. In vitro induction of segregational errors of chromosomes by natural cannabinoids in normal human lymphocytes. Environ. Mutagen 2, 139–147 (1980).
Google Scholar
Reece, A. S. & Hulse, G. K. Cannabis teratology explains current patterns of coloradan congenital defects: The contribution of increased cannabinoid exposure to rising teratological trends. Clin. Pediatr. 58, 1085–1123 (2019).
Google Scholar
Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: Reflections on Murphy et al.’ cannabinoid exposure and altered DNA methylation in rat and human sperm’ epigenetics 2018. Epigenetics 14, 1041–1056 (2019).
Google Scholar
Reece, A. S. & Hulse, G. K. Canadian cannabis consumption and patterns of congenital anomalies: An ecological geospatial analysis. J. Addict. Med. 14, e195–e210 (2020).
Google Scholar
Reece, A. S., Wang, W. & Hulse, G. K. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. Med. Hypotheses 116, 10–21 (2018).
Google Scholar
Reece, A. S. & Hulse, G. K. Rapid Response to Lane. Re: Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study, 2016. BMJ Open 6, e011891–e011902 (2020).
Google Scholar
McClean, D. K. & Zimmerman, A. M. Action of delta 9-tetrahydrocannabinol on cell division and macromolecular synthesis in division-synchronized protozoa. Pharmacology 14, 307–321 (1976).
Google Scholar
Tahir, S. K. & Zimmerman, A. M. Influence of marihuana on cellular structures and biochemical activities. Pharmacol. Biochem. Behav. 40, 617–623 (1991).
Google Scholar
Wilson, R. G. Jr., Tahir, S. K., Mechoulam, R., Zimmerman, S. & Zimmerman, A. M. Cannabinoid enantiomer action on the cytoarchitecture. Cell. Biol. Int. 20, 147–157 (1996).
Google Scholar
Wang, J., Yuan, W. & Li, M. D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol. 44, 269–286 (2011).
Google Scholar
Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on chromatin structure and function in human cells. Biochem. Pharmacol. 30, 45–58 (1981).
Google Scholar
Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 30, 31–43 (1981).
Google Scholar
DiNieri, J. A. et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70, 763–769 (2011).
Google Scholar
Szutorisz, H. et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 39, 1315–1323 (2014).
Google Scholar
Szutorisz, H., Egervari, G., Sperry, J., Carter, J. M. & Hurd, Y. L. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol. Teratol. 58, 107–114 (2016).
Google Scholar
Szutorisz, H. & Hurd, Y. L. Epigenetic effects of cannabis exposure. Biol. Psychiatry 79, 586–594 (2016).
Google Scholar
Watson, C. T. et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40, 2993–3005 (2015).
Google Scholar
Murphy, S. K. et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 13, 1208–1212 (2018).
Google Scholar
Schrott, R. et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 15, 161–173 (2019).
Google Scholar
Vela, G. et al. Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res. 807, 101–109 (1998).
Google Scholar
Fish, E. W. et al. Cannabinoids exacerbate alcohol teratogenesis by a CB1-hedgehog interaction. Sci. Rep. 9, 16057 (2019).
Google Scholar
Callén, L. et al. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J. Biol. Chem. 287, 20851–20865 (2012).
Google Scholar
Rozenfeld, R. et al. Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS ONE 7, e29239 (2012).
Google Scholar
Schoffelmeer, A. N., Hogenboom, F., Wardeh, G. & De Vries, T. J. Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51, 773–781 (2006).
Google Scholar
Rozenfeld, R. et al. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 30, 2350–2363 (2011).
Google Scholar
Viñals, X. et al. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol. 13, e1002194 (2015).
Google Scholar
Kargl, J. et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J. Biol. Chem. 287, 44234–44248 (2012).
Google Scholar
Ellis, J., Pediani, J. D., Canals, M., Milasta, S. & Milligan, G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J. Biol. Chem. 281, 38812–38824 (2006).
Google Scholar
Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: A mechanism for receptor cross-talk?. Mol. Pharmacol. 67, 1697–1704 (2005).
Google Scholar
Carriba, P. et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32, 2249–2259 (2007).
Google Scholar
Forrester, M. B. & Merz, R. D. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986–2002. J. Toxicol. Environ. Health 70, 7–18 (2007).
Google Scholar
Reece, A.S. & Hulse, G.K. Broad spectrum epidemiological contribution of cannabis and other substances to the teratological profile of Northern New South Wales: Geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21(1), 75 (2020).
Reece, A.S. & Hulse, G.K. Cannabis in pregnancy: Rejoinder, exposition and cautionary tales. Psychiatric Times. https://www.bing.com/search?q=Cannabis+in+Pregnancy+%E2%80%93+Rejoinder%82C+Exposition+and+Cautionary+Tales&cvid=22538e20124c04711b92017489c92063214a&aqs=edge..92017469i92017457.92017439j92017480j92017481&pglt=92017443&FORM=ANSPA92017481&PC=U92017531 (2020).
Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Primers 4, 29 (2018).
Google Scholar
Oosterhuis, J. W. & Looijenga, L. H. J. Germ cell tumors from a developmental perspective: Cells of origin, pathogenesis, and molecular biology (emerging patterns). In Pathology and Biology of Human Germ Cell Tumors (eds Nogales, F. F. & Jimenez, R. E.) 23–129 (Springer, 2017).
Google Scholar
Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell. Rep. 23, 3392–3406 (2018).
Google Scholar
Daling, J. R. et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 115, 1215–1223 (2009).
Google Scholar
Callaghan, R. C., Allebeck, P., Akre, O., McGlynn, K. A. & Sidorchuk, A. Cannabis use and incidence of testicular cancer: A 42-year follow-up of Swedish men between 1970 and 2011. Cancer Epidemiol. Biomarkers Prev. 26, 1644–1652 (2017).
Google Scholar
Trabert, B., Sigurdson, A. J., Sweeney, A. M., Strom, S. S. & McGlynn, K. A. Marijuana use and testicular germ cell tumors. Cancer 117, 848–853 (2011).
Google Scholar
Lacson, J. C. et al. Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonseminoma risk. Cancer 118, 5374–5383 (2012).
Google Scholar
Volkow, N. D., Compton, W. M. & Wargo, E. M. The risks of marijuana use during pregnancy. JAMA 317, 129–130 (2017).
Google Scholar
Volkow, N. D., Han, B., Compton, W. M. & Blanco, C. Marijuana use during stages of pregnancy in the United States. Ann. Intern. Med. 166, 763–764 (2017).
Google Scholar
Efird, J. T. et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: Cigarette smoking and other lifestyle behaviors. J. Neurooncol. 68, 57–69 (2004).
Google Scholar
Grufferman, S., Schwartz, A. G., Ruymann, F. B. & Maurer, H. M. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4, 217–224 (1993).
Google Scholar
Kuijten, R. R., Bunin, G. R., Nass, C. C. & Meadows, A. T. Gestational and familial risk factors for childhood astrocytoma: Results of a case-control study. Cancer Res. 50, 2608–2612 (1990).
Google Scholar
Reece, A. S. & Hulse, G. K. A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid exposure as drivers of rising US pediatric cancer rates. BMC Cancer 21, 197 (2021).
Google Scholar
Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
Google Scholar
Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).
Google Scholar
McCantz-Katz, E. 2017 Annual Report Snippets, NSDUH, SAMHSA, USA DHHS: Selected streamlined trends. Vol. 1 (ed. Substance Abuse and Mental Health Services Administration US Department of Health and Human Services) 1–78 (SAMHSA, DHHS, 2018).
McCantz-Katz, E. The National Survey of Drug Use and Health: 2019. Vol. 1 (eds. Substance Abuse and Mental Health Services Administration & US Department of Health and Human Services) 1–63 (SAMHSA, US DHHS, 2020).
Substance Abuse and Mental Health Services Administration (SAMHSA), Department of Health and Human Services (HHS) & United States of America. National Survey on Drug Use and Health. Vol. 2018 (Department of Health and Human Services, 2018).
United National Office of Drugs and Crime. World Drug Report 2019. Vol. 1–5 (ed. World Health Organization Office of Drugs and Crime) https://wdr.unodc.org/wdr2019/index.html (United National World Health Organization, 2019).
Busch, F. W., Seid, D. A. & Wei, E. T. Mutagenic activity of marihuana smoke condensates. Cancer Lett. 6, 319–324 (1979).
Google Scholar
Zimmerman, A. M. & Raj, A. Y. Influence of cannabinoids on somatic cells in vivo. Pharmacology 21, 277–287 (1980).
Google Scholar
Tahir, S. K., Trogadis, J. E., Stevens, J. K. & Zimmerman, A. M. Cytoskeletal organization following cannabinoid treatment in undifferentiated and differentiated PC12 cells. Biochem. Cell Biol. 70, 1159–1173 (1992).
Google Scholar
United States Department of Health and Human Services, Centers for Disease Control and Prevention and & National Cancer Institute. National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence: U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001–2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June 2020. www.cdc.gov/cancer/public-use. Vol. 2020 (ed. United States Department of Health and Human Services, C.f.D.C.a.P.a.N.C.I.) (United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, 2020).
National Birth Defects Prevention Network. National Birth Defects Prevention Network. Vol. 2018 (ed. Network, N.B.D.P.) (National Birth Defects Prevention Network, 2018).
Abeywardana, S. & Sullivan, E. A. Congenital Anomalies in Australia 2002–2003 (Australian Institute of Health and Welfare, 2008).
Bird, T. M., Hobbs, C. A., Cleves, M. A., Tilford, J. M. & Robbins, J. M. National rates of birth defects among hospitalized newborns. Birth. Defects Res. A 76, 762–769 (2006).
Google Scholar
Natoli, J. L., Ackerman, D. L., McDermott, S. & Edwards, J. G. Prenatal diagnosis of Down syndrome: A systematic review of termination rates (1995–2011). Prenat. Diagn. 32, 142–153 (2012).
Google Scholar
Substance Abuse and Mental Health Network. Substance Abuse and Mental Health Data Archive (SAMHDA). Vol. 2019 (ed. Substance Abuse and Mental Health Services Administration) (Substance Abuse and Mental Health Services Administration, Substance Abuse and Mental Health Services Administration, 2019).
ElSohly, M. A. et al. Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biol. Psychiatry 79, 613–619 (2016).
Google Scholar
Chandra, S. et al. New trends in cannabis potency in USA and Europe during the last decade (2008–2017). Eur. Arch. Psychiatry Clin. Neurosci. 269, 5–15 (2019).
Google Scholar
ElSohly, M. A. et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J. Forensic Sci. 45, 24–30 (2000).
Google Scholar
VanderWeele, T. J., Ding, P. & Mathur, M. Technical considerations in the use of the e-value. J. Causal Inference 7, 1–11 (2019).
Google Scholar
Pearl, J. & Mackaenzie, D. The Book of Why (Basic Books, 2019).
Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P. & Roth, M. D. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am. J. Physiol. 284, L298-306 (2003).
Google Scholar
Sarafian, T. A. et al. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am. J. Physiol. 290, L1202-1209 (2006).
Google Scholar
Morimoto, S. et al. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J. Biol. Chem. 282, 20739–20751 (2007).
Google Scholar
Shoyama, Y., Sugawa, C., Tanaka, H. & Morimoto, S. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. Plant Signal Behav. 3, 1111–1112 (2008).
Google Scholar
Fisar, Z., Singh, N. & Hroudova, J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 231, 62–71 (2014).
Google Scholar
Koller, V. J. et al. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497–C8. Toxicol. Appl. Pharmacol. 277, 164–171 (2014).
Google Scholar
Koller, V. J. et al. Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem. Toxicol. 80, 130–136 (2015).
Google Scholar
Singh, N., Hroudova, J. & Fisar, Z. Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J. Mol. Neurosci. 56, 926–931 (2015).
Google Scholar
Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 1–195 (2018).
Reece, A. S. & Hulse, G. K. Broad Spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21, 75 (2020).
Google Scholar
Reece, A. S. & Hulse, G. K. Cannabis consumption patterns explain the east-west gradient in Canadian Neural Tube Defect Incidence: An ecological study. Glob. Pediatr. Health 6, 2333 (2019).
Gurney, J., Shaw, C., Stanley, J., Signal, V. & Sarfati, D. Cannabis exposure and risk of testicular cancer: A systematic review and meta-analysis. BMC Cancer 15, 897 (2015).
Google Scholar
Song, A. et al. Incident testicular cancer in relation to using marijuana and smoking tobacco: A systematic review and meta-analysis of epidemiologic studies. Urol. Oncol. 38(642), e641-642 (2020).
Torchiano M. effzise: Efficient Effect Size Computation. Vol. 2020 (CRAN, 2020). https://CRAN.R-project.org/package=effsize.
Agence France-Presse in Paris. France to investigate cause of upper limb defects in babies. In The Guardian (The Guardian, London, 2018).
Robinson M. Babies born with deformed hands spark investigation in Germany. Vol. 2019 (ed. Health, C.) (CNN News, 2019). https://edition.cnn.com/2019/09/16/health/hand-deformities-babies-gelsenkirchen-germany-intl-scli-grm/index.html.
Robison, L. L. et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring: An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 63, 1904–1911 (1989).
Google Scholar
Wen, W. Q. et al. Paternal military service and risk for childhood leukemia in offspring. Am. J. Epidemiol. 151, 231–240 (2000).
Google Scholar
Society, A.C. Cancer Facts & Figures 2020 Vol. 2020 (American Cancer Society, 2020).
Patsenker, E. & Stickel, F. Cannabinoids in liver diseases. Clin. Liver Dis. 7, 21–25 (2016).
Google Scholar
Yang, Y. Y. et al. Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis. Clin. Sci. 112, 533–542 (2007).
Google Scholar
Mukhopadhyay, B. et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology 61, 1615–1626 (2015).
Google Scholar
Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of cannabinoids on spermatogensis in mice. In Marijuana and Medicine Vol. 1 (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).
Huang, H. F. S., Nahas, G. G. & Hembree, W. C. Effects of marijuana inhalantion on spermatogenesis of the rat. In Marijuana in Medicine Vol. 1 (eds Nahas, G. G. et al.) 359–366 (Human Press, 1999).
Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 179–188 (2019).
Google Scholar
Szutorisz, H. & Hurd, Y. L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 (2018).
Google Scholar
Mon, M. J., Jansing, R. L., Doggett, S., Stein, J. L. & Stein, G. S. Influence of delta9-tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 27, 1759–1765 (1978).
Google Scholar
Zimmerman, A. M. & Zimmerman, S. Cytogenetic studies of cannabinoid effects. In Genetic and Perinatal Effects of Abused Substances Vol. 1 (eds Braude, M. C. & Zimmerman, A. M.) 95–112 (Academic Press Inc, 1987).
Zimmerman, A. M., Stich, H. & San, R. Nonmutagenic action of cannabinoids in vitro. Pharmacology 16, 333–343 (1978).
Google Scholar
Zimmerman, S. & Zimmerman, A. M. Genetic effects of marijuana. Int. J. Addict. 25, 19–33 (1990).
Google Scholar
Nahas, G. G., Morishima, A. & Desoize, B. Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed. Proc. 36, 1748–1752 (1977).
Google Scholar
Blevins, R. D. & Regan, J. D. delta-9-Tetrahydrocannabinol: Effect on macromolecular synthesis in human and other mammalian cells. Arch. Toxicol. 35, 127–135 (1976).
Google Scholar
Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371, 4916 (2021).
Google Scholar
Alberts, B. et al. (eds) Molecular Biology of the Cell, 1601 (Garland Science, 2008).
Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).
Google Scholar
Kloosterman, W. P. Genetics: Making heads or tails of shattered chromosomes. Science 348, 1205–1206 (2015).
Google Scholar
de Pagter, M. S. et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96, 651–656 (2015).
Google Scholar
Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).
Google Scholar
Kuznetsova, A. Y. et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14, 2810–2820 (2015).
Google Scholar
Hatch, E. M. & Hetzer, M. W. Linking micronuclei to chromosome fragmentation. Cell 161, 1502–1504 (2015).
Google Scholar
Lusk, C. P. & King, M. C. Rotten to the core: Why micronuclei rupture. Dev. Cell 47, 265–266 (2018).
Google Scholar
Terzoudi, G. I. et al. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Mutat. Res. Genet. Toxicol. Environ. Mutagen 793, 185–198 (2015).
Google Scholar
Norppa, H. & Falck, G. C. What do human micronuclei contain?. Mutagenesis 18, 221–233 (2003).
Google Scholar
Knouse, K. A. & Amon, A. Cell biology: The micronucleus gets its big break. Nature 522, 162–163 (2015).
Google Scholar
Waldron, D. Genome stability: Chromothripsis and micronucleus formation. Nat. Rev. Genet. 16, 376–377 (2015).
Google Scholar
Fenech, M. et al. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res 786, 108342 (2020).
Google Scholar
Beck, D., Ben Maamar, M. & Skinner, M. K. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenet. Chromatin 14, 1–14 (2021).
Google Scholar
Yang, Y. & Li, G. Post-translational modifications of PRC2: signals directing its activity. Epigenet. Chromatin 13, 47 (2020).
Google Scholar
Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26(11), 1742–1753 (2020).
Reece A. S. & Hulse G. K. Cannabis and pregnancy don’t mix. Mo. Med. 117(6), 530–531 (2020).
Reece, A. S. & Hulse, G. K. Impact of lifetime opioid exposure on arterial stiffness and vascular age: Cross-sectional and longitudinal studies in men and women. BMJ Open 4, 1–19 (2014).
Google Scholar
Hill, A. B. The environment and disease: Association or causation?. Proc. R. Soc. Med. 58, 295–300 (1965).
Google Scholar
Robins, J. M., Hernán, M. Á. & Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550–560 (2000).
Google Scholar
Raad, H., Cornelius, V., Chan, S., Williamson, E. & Cro, S. An evaluation of inverse probability weighting using the propensity score for baseline covariate adjustment in smaller population randomised controlled trials with a continuous outcome. BMC Med. Res. Methodol. 20, 70 (2020).
Google Scholar
Seaman, S. R. & White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295 (2013).
Google Scholar
Reece, A. S. & Hulse, G. K. Effect of cannabis legalization on US autism incidence and medium term projections. Clin. Pediatr. Open Access 4, 1–17 (2019).
Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et al. “cannabinoid exposure and altered DNA methylation in rat and human sperm” epigenetics. Epigenetics 14, 1041–1056 (2019).
Google Scholar
Reece, A. S. & Hulse, G. K. Contemporary epidemiology of rising atrial septal defect trends across USA 1991–2016: A combined ecological geospatiotemporal and causal inferential study. BMC Pediatr. 20, 539 (2020).
Google Scholar
Reece, A. S., Norman, A. & Hulse, G. K. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study. BMJ Open 6, e011891 (2016).
Google Scholar
Corsi, D. J. et al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat. Med. 26, 1536–1540 (2020).
Google Scholar
Corsi, D. J. The potential association between prenatal cannabis use and congenital anomalies. J. Addict. Med. 14, 451–453 (2020).
Google Scholar
Reece, A. S. & Hulse, G. K. Epidemiological associations of various substances and multiple cannabinoids with autism in USA. Clin. Pediatr. Open Access 4, 1–20 (2019).
Brents L. Correlates and consequences of Prenatal Cannabis Exposure (PCE): Identifying and Characterizing Vulnerable Maternal Populations and Determining Outcomes in Exposed Offspring in Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis and Treatment, Vol. 1 (ed. Preedy V.R.) 160–170 (Academic Press, 2017).
Smith, A. M., Longo, C. A., Fried, P. A., Hogan, M. J. & Cameron, I. Effects of marijuana on visuospatial working memory: An fMRI study in young adults. Psychopharmacology 210, 429–438 (2010).
Google Scholar
Smith, A. M. et al. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol. 58, 53–59 (2016).
Google Scholar
Fine, J. D. et al. Association of prenatal cannabis exposure with psychosis proneness among children in the adolescent brain cognitive development (ABCD) study. JAMA Psychiat. 76, 762–764 (2019).
Google Scholar
Paul, S. E. et al. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiat. 78, 1–64 (2020).
Women and Newborn Health Service, Department of Health & Government of Western Australia. Western Australian Register of Developmental Anomalies 1980–2014. Vol. 1 (ed. Western Australia Health) 28 (Western Australia Health, 2015).
Walker, K., Herman, M. & Eberwein, K. tidycensus: Load US Census Boundary and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames. Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2020).
Wikipedia. Legality of Cannabis by U.S. Juridicition. Vol. 2020 (Wikipedia, 2020). https://en.wikipedia.org/wiki/Legality_of_cannabis_by_U.S._jurisdiction.
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686–1691 (2019).
Google Scholar
Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. Vol. 2020 Version 0.84 (CRAN, 2017). https://github.com/taiyun/corrplot.
Wright, K. corrgram: Plot a Correlogram. In CRAN, Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2018). https://CRAN.R-project.org/package=corrgram.
Kliber, C. & Zeileis, A. Applied Econometrics with R (Springer-Verlag, New York, 2008). https://CRAN.R-project.org/package=AER.
Lumley, T. Complex Surveys: A Guide to Analysis Using R (Wiley, 2010).
Google Scholar
Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (Northwestern University, 2020).
Wal, W. & Geskus, R. ipw: An R package for inverse probability weighting. J. Stat. Softw. 43, 13 (2011).
Google Scholar
Source: Ecology - nature.com