in

Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA)

  • 1.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).

    Article 

    Google Scholar 

  • 2.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).

    Article 

    Google Scholar 

  • 3.

    Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15. https://doi.org/10.1098/rsbl.2018.0781 (2019).

  • 4.

    Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688. https://doi.org/10.1038/nature03906 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211. https://doi.org/10.1016/j.oneear.2020.07.010 (2020).

    Article 

    Google Scholar 

  • 6.

    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Alongi, D. M. Carbon cycling in the world’s mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests 11, 1–17. https://doi.org/10.3390/f11090977 (2020).

    Article 

    Google Scholar 

  • 8.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Alongi, D. M. Global significance of mangrove blue carbon in climate change mitigation. Science 2, 67 (2020).

    Article 

    Google Scholar 

  • 10.

    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14. https://doi.org/10.1098/rsbl.2018.0251 (2018).

  • 11.

    Rivera-Monroy, V. H. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 347–381 (Springer, 2017).

  • 12.

    Yao, Q., Liu, K.-B., Platt, W. J. & Rivera-Monroy, V. H. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene. Quatern. Res. 83, 449–458. https://doi.org/10.1016/j.yqres.2015.03.005 (2015).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E. & Davis, S. in Coastal Wetlands (eds. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Hopkinson, C. S.) 717–785 (Elsevier, 2019).

  • 14.

    Woodroffe, C., Robertson, A. & Alongi, D. Mangrove sediments and geomorphology. Trop. Mangrove Ecosyst. Coastal Estuarine Stud. 41 (1992).

  • 15.

    Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538. https://doi.org/10.1038/s41558-018-0162-5 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Twilley, R. R. & Rivera-Monroy, V. H. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coastal Res. 79–93 (2005).

  • 17.

    Bunting, P. et al. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article 

    Google Scholar 

  • 19.

    Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Rovai, A. S. et al. Macroecological patterns of forest structure and allometric scaling in mangrove forests. Glob. Ecol. Biogeogr. 30, 1000–1013. https://doi.org/10.1111/geb.13268 (2021).

    Article 

    Google Scholar 

  • 22.

    Bouillon, S. et al. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cycles 22 (2008).

  • 23.

    Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochem. Cycles 26. https://doi.org/10.1029/2012gb004375 (2012).

  • 24.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968. https://doi.org/10.1038/nclimate1970 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co;2 (2001).

    Article 

    Google Scholar 

  • 26.

    Lugo, A. E. & Snedaker, S. C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5, 39–64 (1974).

    Article 

    Google Scholar 

  • 27.

    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855. https://doi.org/10.1111/gcb.15275 (2020).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).

    Article 

    Google Scholar 

  • 29.

    Kristensen, E. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 163–209 (Springer, 2017).

  • 30.

    Friess, D. A. JG Watson, Inundation classes, and their influence on paradigms in mangrove forest ecology. Wetlands 37, 603–613. https://doi.org/10.1007/s13157-016-0747-6 (2017).

    Article 

    Google Scholar 

  • 31.

    Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H. & Sullivan, J. K. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569, 311–324. https://doi.org/10.1007/s10750-006-0139-7 (2006).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zhao, X. C. et al. Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate. Ecol. Model. 436. https://doi.org/10.1016/j.ecolmodel.2020.109292 (2020).

  • 33.

    Sippo, J. Z. et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochim. Cosmochim. Acta 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225. https://doi.org/10.1016/j.gca.2014.11.023 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Chen, X. et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets?. J. Geophys. Res. Oceans 123, 6962–6979. https://doi.org/10.1029/2018JC014448 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyeare, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink?. Limnol. Oceanogr. 58, 475–488 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Sadat-Noori, M., Santos, I. R., Tait, D. R., Reading, M. J. & Sanders, C. J. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J. Hydrol. 553, 188–198. https://doi.org/10.1016/j.jhydrol.2017.07.058 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-08842-6 (2019).

  • 39.

    Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 64, 996–1013. https://doi.org/10.1002/lno.11090 (2019).

  • 40.

    Sippo, J. Z. et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnol. Oceanogr. Lett. 2, 1–8. https://doi.org/10.1002/lol2.10031 (2017).

    Article 

    Google Scholar 

  • 41.

    Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. BioRxiv. 1–22. https://doi.org/10.1101/2020.08.27.271189 (2020).

  • 42.

    Volta, C. et al. Seasonal variations in dissolved carbon inventory and fluxes in a mangrove-dominated estuary. Global Biogeochem. Cycles 34. https://doi.org/10.1029/2019GB006515 (2020).

  • 43.

    Barr, J. G. et al. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J. Geophys. Res. Biogeosci. 115. https://doi.org/10.1029/2009jg001186 (2010).

  • 44.

    Barr, J. G., Engel, V., Smith, T. J. & Fuentes, J. D. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agric. For. Meteorol. 153, 54–66. https://doi.org/10.1016/j.agrformet.2011.07.022 (2012).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Chen, H., Lu, W., Yan, G., Yang, S. & Lin, G. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China. Biogeosciences 11, 5323–5333 (2014).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Ray, R. et al. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest. Tellus B Chem. Phys. Meteorol. 65, 1–11. https://doi.org/10.3402/tellusb.v65i0.18981 (2013).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyeare, B. D. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks—A revision of global mangrove CO2 emissions. Geochim. Cosmochim. Acta 222, 729–745. https://doi.org/10.1016/j.gca.2017.11.026 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyeare, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4. https://doi.org/10.1126/sciadv.aao4985 (2018).

  • 49.

    Troxler, T. G. et al. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agric. For. Meteorol. 213, 273–282. https://doi.org/10.1016/j.agrformet.2014.12.012 (2015).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol. 33, 368–398. https://doi.org/10.1111/j.1442-9993.2008.01894.x (2008).

    Article 

    Google Scholar 

  • 51.

    Dvorak, V. F. Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103, 420–430. https://doi.org/10.1175/1520-0493(1975)103%3c0420:Tciaaf%3e2.0.Co;2 (1975).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Doyle, T. W., Smith III, T. J. & Robblee, M. B. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. J. Coastal Res. 159–168 (1995).

  • 53.

    Imbert, D., Labbe, P. & Rousteau, A. Hurricane damage and forest structure in Guadeloupe, French West Indies. J. Trop. Ecol. 12, 663–680 (1996).

    Article 

    Google Scholar 

  • 54.

    Kauffman, J. B. & Cole, T. G. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30, 1077–1084. https://doi.org/10.1007/s13157-010-0114-y (2010).

    Article 

    Google Scholar 

  • 55.

    Lagomasino, D. et al. Storm surge, not wind, caused mangrove dieback in southwest Florida following Hurricane Irma. https://doi.org/10.31223/osf.io/q4exh (2020).

  • 56.

    Paling, E. I., Kobryn, H. T. & Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 77, 603–613 (2008).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Radabaugh, K. R. et al. Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in Southwest Florida, USA. Estuaries Coasts 43, 1104–1118. https://doi.org/10.1007/s12237-019-00564-8 (2020).

    Article 

    Google Scholar 

  • 58.

    Salmo, S. G., Lovelock, C. E. & Duke, N. C. Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon ‘Chan-hom’in the Philippines. Hydrobiologia 733, 85–102 (2014).

    Article 

    Google Scholar 

  • 59.

    Sherman, R. E., Fahey, T. J. & Martinez, P. Hurricane impacts on a mangrove forest in the Dominican Republic: Damage patterns and early recovery 1. Biotropica 33, 393–408. https://doi.org/10.1646/0006-3606(2001)033[0393:Hioamf]2.0.Co;2 (2001).

    Article 

    Google Scholar 

  • 60.

    Smith, T. J., Robblee, M. B., Wanless, H. R. & Doyle, T. W. Mangroves, hurricanes, and lightning strikes. Bioscience 44, 256–262. https://doi.org/10.2307/1312230 (1994).

    Article 

    Google Scholar 

  • 61.

    Baldwin, A., Egnotovich, M., Ford, M. & Platt, W. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecol. 157, 151–164 (2001).

    Article 

    Google Scholar 

  • 62.

    Danielson, T. M. et al. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. For. Ecol. Manag. 404, 115–125 (2017).

    Article 

    Google Scholar 

  • 63.

    Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9. https://doi.org/10.1002/ecs2.2231 (2018).

  • 64.

    Piou, C., Feller, I. C., Berger, U. & Chi, F. Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane 1. Biotropica 38, 365–374. https://doi.org/10.1111/j.1744-7429.2006.00156.x (2006).

    Article 

    Google Scholar 

  • 65.

    Rivera-Monroy, V. H. et al. Long-term demography and stem productivity of Everglades mangrove forests (Florida, USA): Resistance to hurricane disturbance. For. Ecol. Manag. 440. https://doi.org/10.1016/j.foreco.2019.02.036 (2019).

  • 66.

    Ouyang, X., Guo, F. & Lee, S. Y. The impact of super-typhoon Mangkhut on sediment nutrient density and fluxes in a mangrove forest in Hong Kong. Sci. Total Environ. 142637. https://doi.org/10.1016/j.scitotenv.2020.142637 (2020).

  • 67.

    Xu, X., Hirata, E., Enoki, T. & Tokashiki, Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol. 173, 161–170. https://doi.org/10.1023/B:VEGE.0000029319.05980.70 (2004).

    Article 

    Google Scholar 

  • 68.

    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 1–13 (2019).

    Article 

    Google Scholar 

  • 69.

    Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. U.S.A. 116, 12232–12237. https://doi.org/10.1073/pnas.1820067116 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Rivera-Monroy, V. H. et al. Tropical cyclone landfall frequency and large-scale environmental impacts along Karstic Coastal Regions (Yucatan Peninsula, Mexico). Appl. Sci. 10, 5815 (2020).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Benedetto, K. M. & Trepanier, J. C. Climatology and spatiotemporal analysis of North Atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere 11. https://doi.org/10.3390/atmos11030291 (2020).

  • 72.

    Powell, M. D. & Reinhold, T. A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 88, 513–526 (2007).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Castañeda-Moya, E., Twilley, R. R. & Rivera-Monroy, V. H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For. Ecol. Manag. 307, 226–241 (2013).

    Article 

    Google Scholar 

  • 74.

    Adame, M. F. & Lovelock, C. E. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663, 23–50. https://doi.org/10.1007/s10750-010-0554-7 (2011).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Day, J. W. et al. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat. Bot. https://doi.org/10.1016/0304-3770(96)01063-7 (1996).

    Article 

    Google Scholar 

  • 76.

    Ribeiro, R. d. A., Rovai, A. S., Twilley, R. R. & Castañeda-Moya, E. Spatial variability of mangrove primary productivity in the neotropics. Ecosphere 10, doi:https://doi.org/10.1002/ecs2.2841 (2019).

  • 77.

    Twilley, R. R. et al. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111, 109–122. https://doi.org/10.1007/s004420050214 (1997).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Twilley, R. W., Lugo, A. E. & Patterson-Zucca, C. Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology 67, 670–683. https://doi.org/10.2307/1937691 (1986).

    Article 

    Google Scholar 

  • 79.

    Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15. https://doi.org/10.1088/1748-9326/ab82cf (2020).

  • 80.

    Holland, G. J., Done, J. M., Douglas, R., Saville, G. R. & Ge, M. in Hurricane Risk 23–42 (Springer, 2019).

  • 81.

    Breithaupt, J. L., Smoak, J. M., Sanders, C. J. & Troxler, T. G. Spatial variability of organic carbon, CaCO3 and nutrient burial rates spanning a mangrove productivity gradient in the Coastal Everglades. Ecosystems 22, 844–858. https://doi.org/10.1007/s10021-018-0306-5 (2019).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Ho, D. T. et al. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades. Biogeosciences 14, 2543–2559. https://doi.org/10.5194/bg-14-2543-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 83.

    Reithmaier, G., Johnston, S. G. & Maher, D. T. Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park, Florida Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park. 1–29 (2020).

  • 84.

    Han, X., Feng, L., Hu, C. & Kramer, P. Hurricane-induced changes in the Everglades National Park mangrove forest: Landsat observations between 1985 and 2017. J. Geophys. Res. Biogeosci. 123, 3470–3488. https://doi.org/10.1029/2018jg004501 (2018).

    Article 

    Google Scholar 

  • 85.

    Cortés-Ramos, J., Farfán, L. M. & Herrera-Cervantes, H. Assessment of tropical cyclone damage on dry forests using multispectral remote sensing: The case of Baja California Sur, Mexico. J. Arid Environ. 178. https://doi.org/10.1016/j.jaridenv.2020.104171 (2020).

  • 86.

    Doyle, T. W., Krauss, K. W. & Wells, C. J. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the Everglades. Wetlands 29, 44–53. https://doi.org/10.1672/07-233.1 (2009).

    Article 

    Google Scholar 

  • 87.

    Castañeda-Moya, E. et al. Sediment and nutrient deposition associated with hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries Coasts 33, 45–58. https://doi.org/10.1007/s12237-009-9242-0 (2010).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23. https://doi.org/10.1016/j.ecss.2012.02.021 (2012).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Castaneda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U S A 117, 4831–4841. https://doi.org/10.1073/pnas.1908597117 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Adame, M. F. et al. Drivers of mangrove litterfall within a Karstic Region affected by frequent hurricanes. Biotropica 45, 147–154. https://doi.org/10.1111/btp.12000 (2013).

    Article 

    Google Scholar 

  • 91.

    Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13. https://doi.org/10.1016/j.ecss.2007.08.024 (2008).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Kovacs, J. M., Blanco-Correa, M. & Flores-Verdugo, F. A logistic regression model of hurricane impacts in a mangrove forest of the Mexican Pacific. J. Coastal Res. 17, 30–37 (2001).

    Google Scholar 

  • 93.

    Smith, T. J. et al. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29, 24 (2009).

    Article 

    Google Scholar 

  • 94.

    Vogt, J. et al. Investigating the role of impoundment and forest structure on the resistance and resilience of mangrove forests to hurricanes. Aquat. Bot. 97, 24–29. https://doi.org/10.1016/j.aquabot.2011.10.006 (2012).

    Article 

    Google Scholar 

  • 95.

    Osland, M. J. et al. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 214, 120–140. https://doi.org/10.1016/j.ecss.2018.09.006 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 96.

    Ting, M., Kossin, J. P., Camargo, S. J. & Li, C. Past and future hurricane intensity change along the US East Coast. Sci. Rep. 9, 7795 (2019).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Rego, J. L. & Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 36 (2009).

  • 98.

    Li, L. & Chakraborty, P. Slower decay of landfalling hurricanes in a warming world. Nature 587, 230–234. https://doi.org/10.1038/s41586-020-2867-7 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 99.

    Shi, L., Olabarrieta, M., Nolan, D. S. & Warner, J. C. Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-14423-9 (2020).

  • 100.

    Mazda, Y., Kobashi, D. & Okada, S. Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manag. 13, 647–655 (2005).

    Article 

    Google Scholar 

  • 101.

    Krauss, K. W. et al. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29, 142–149. https://doi.org/10.1672/07-232.1 (2009).

    Article 

    Google Scholar 

  • 102.

    Smith, C. G., Price, R. M., Swarzenski, P. W. & Stalker, J. C. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark river slough, Florida Coastal Everglades, USA. Estuaries Coasts 39, 1600–1616. https://doi.org/10.1007/s12237-016-0079-z (2016).

    Article 

    Google Scholar 

  • 103.

    Wdowinski, S., Bray, R., Kirtman, B. P. & Wu, Z. H. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean Coastal Manag. 126, 1–8. https://doi.org/10.1016/j.ocecoaman.2016.03.002 (2016).

    Article 

    Google Scholar 

  • 104.

    Whelan, K. R. T., Smith, T. J., Anderson, G. H. & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23. https://doi.org/10.1672/08-125.1 (2009).

    Article 

    Google Scholar 

  • 105.

    Hogan, J. A. et al. The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests 8, 1–27. https://doi.org/10.3390/f9070404 (2018).

    CAS 
    Article 

    Google Scholar 

  • 106.

    Rivera-Monroy, V. H. et al. Current methods to evaluate net primary production and carbon budgets in mangrove forests. Methods Biogeochem. Wetlands, 243–288. https://doi.org/10.2136/sssabookser10.c14 (2013).

  • 107.

    Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-71194-5 (2020).

    CAS 
    Article 

    Google Scholar 

  • 108.

    Yao, Q. et al. A geochemical record of late-holocene hurricane events from the Florida Everglades. Water Resour. Res. 56, e2019WR026857. https://doi.org/10.1029/2019wr026857 (2020).

  • 109.

    Troxler, T. G. et al. Integrated carbon budget models for the everglades terrestrial-coastal-oceanic gradient current status and needs for inter-site comparisons. Oceanography 26, 98–107. https://doi.org/10.5670/oceanog.2013.51 (2013).

    Article 

    Google Scholar 

  • 110.

    Romigh, M. M., Davis, S. E., Rivera-Monroy, V. H. & Twilley, R. R. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569, 505–516. https://doi.org/10.1007/s10750-006-0152-x (2006).

    CAS 
    Article 

    Google Scholar 

  • 111.

    Heald, E. J. The production of organic detritus in a south Florida estuary. Univ. Miami Sea Grant Tech. Bull. 6, 1–116 (1971).

    Google Scholar 

  • 112.

    Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 113.

    Lin, T. C., Hogan, J. A. & Chang, C. T. Tropical cyclone ecology: A scale-link perspective. Trends Ecol. Evol. 35, 594–604. https://doi.org/10.1016/j.tree.2020.02.012 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 114.

    Lucash, M. S. et al. More than the sum of its parts: how disturbance interactions shape forest dynamics under climate change. Ecosphere 9. https://doi.org/10.1002/ecs2.2293 (2018).

  • 115.

    Li, S.-B. et al. Factors regulating carbon sinks in mangrove ecosystems. Glob. Change Biol. 24, 4195–4210. https://doi.org/10.1111/gcb.14322 (2018).

    ADS 
    Article 

    Google Scholar 

  • 116.

    Odum, E. P. in Estuarine Perspectives (ed Kennedy, V.S.) 485–495 (Academic Press, 1980).

  • 117.

    Lee, S. Y. Mangrove outwelling: A review. Hydrobiologia 295, 203–212. https://doi.org/10.1007/BF00029127 (1995).

    Article 

    Google Scholar 

  • 118.

    Lee, S. Y. et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 23, 726–743 (2014).

    Article 

    Google Scholar 

  • 119.

    Ray, R., Baum, A., Rixen, T., Gleixner, G. & Jana, T. K. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total Environ. 621, 535–547. https://doi.org/10.1016/j.scitotenv.2017.11.225 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 120.

    Price, R. M., Top, Z., Happell, J. D. & Swart, P. K. Use of tritium and helium to define groundwater flow conditions in Everglades National Park. Water Resour. Res. 39. https://doi.org/10.1029/2002WR001929 (2003).

  • 121.

    Saha, A. K. et al. A hydrological budget (2002–2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow. Estuaries Coasts 35, 459–474. https://doi.org/10.1007/s12237-011-9454-y (2012).

    CAS 
    Article 

    Google Scholar 

  • 122.

    Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125, 213–234. https://doi.org/10.1093/aob/mcz161 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • 123.

    Wade, J. E. & Hewson, E. W. Trees as a local climatic wind indicator. J. Appl. Meteorol. 18, 1182–1187 (1979).

    ADS 
    Article 

    Google Scholar 

  • 124.

    Zhang, K. et al. Airborne laser scanning quantification of disturbances from hurricanes and lightning strikes to mangrove forests in Everglades National Park, USA. Sensors (Basel) 8, 2262–2292. https://doi.org/10.3390/s8042262 (2008).

    ADS 
    Article 

    Google Scholar 

  • 125.

    Doyle, T. W., Girod, G. F. & Books, M. A. Chapter 12: Modeling mangrove forest migration along the southwest coast of Florida under climate change. in (Ning, Z.H., Turner, R.E., Doyle, T.W., Abdollahi, K. eds.) (2003).

  • 126.

    Grueters, U. et al. The mangrove forest dynamics model mesoFON. Ecol. Model. 291, 28–41 (2014).

    Article 

    Google Scholar 

  • 127.

    Lienard, J., Strigul, N., Liénard, J. & Strigul, N. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient. R. Soc. Open Sci. 3, 150589. https://doi.org/10.1098/rsos.150589 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Amir, A. A. & Duke, N. C. Distinct characteristics of canopy gaps in the subtropical mangroves of Moreton Bay, Australia. Estuar. Coast. Shelf Sci. 222, 66–80. https://doi.org/10.1016/j.ecss.2019.04.007 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 129.

    Craighead, F. C. & Gilbert, V. C. the effects of hurricane Donna on the vegetation of southern Florida. Q. J. Florida Acad. Sci. 25, 1–28 (1962).

    Google Scholar 

  • 130.

    Tanner, E. V. J., Kapos, V. & Healey, J. R. Hurricane effects on forest ecosystems in the Caribbean. Biotropica 23, 513–521. https://doi.org/10.2307/2388274 (1991).

    Article 

    Google Scholar 

  • 131.

    Stanturf, J. A., Goodrick, S. L. & Outcalt, K. W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 250, 119–135. https://doi.org/10.1016/j.foreco.2007.03.015 (2007).

    Article 

    Google Scholar 

  • 132.

    Jentsch, A. et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol. 99, 689–702. https://doi.org/10.1111/j.1365-2745.2011.01817.x (2011).

    Article 

    Google Scholar 

  • 133.

    Bongers, F. & Popma, J. Leaf dynamics of seedlings of rain forest species in relation to canopy gaps. Oecologia 82, 122–127 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 134.

    Hikosaka, K. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533. https://doi.org/10.1093/aob/mci050 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 135.

    Ouyang, X., Lee, S. Y., Connolly, R. M. & Kainz, M. J. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-21217-z (2018).

    CAS 
    Article 

    Google Scholar 

  • 136.

    Childers, D. L. et al. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnol. Oceanogr. 51, 602–616. https://doi.org/10.4319/lo.2006.51.1_part_2.0602 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 137.

    Chen, R. & Twilley, R. R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22, 955–970 (1999).

    Article 

    Google Scholar 

  • 138.

    Simard, M. et al. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote. Sens. 72, 299–311 (2006).

    Article 

    Google Scholar 

  • 139.

    Ewe, S. M. L. et al. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569, 459–474. https://doi.org/10.1007/s10750-006-0149-5 (2006).

    Article 

    Google Scholar 

  • 140.

    He, D., Rivera-Monroy, V. H., Jaffé, R. & Zhao, X. Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine Coastal Shelf Sci. 106768. https://doi.org/10.1016/j.ecss.2020.106768 (2020).

  • 141.

    Wachnicka, A., Armitage, A. R., Zink, I., Browder, J. & Fourqurean, J. W. Major 2017 hurricanes and their cumulative impacts on coastal waters of the USA and the Caribbean. Estuaries Coasts 43, 941–942. https://doi.org/10.1007/s12237-020-00702-7 (2020).

    Article 

    Google Scholar 

  • 142.

    Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 117. https://doi.org/10.1029/2011JD017139 (2012).

  • 143.

    Rivera-Monroy, V. H., Day, J. W., Twilley, R. R., Vera-Herrera, F. & Coronado-Molina, C. Flux of nitrogen and sediment in a fringe mangrove forest in terminos lagoon, Mexico. Estuar. Coast. Shelf Sci. 40, 139–160. https://doi.org/10.1016/S0272-7714(05)80002-2 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 144.

    Chen, R. & Twilley, R. R. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44, 93–118. https://doi.org/10.1007/BF00993000 (1999).

    Article 

    Google Scholar 

  • 145.

    Castañeda-Moya, E. et al. Patterns of root dynamics in Mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195. https://doi.org/10.1007/s10021-011-9473-3 (2011).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Empirical estimate of forestation-induced precipitation changes in Europe

    Pathfinder satellite paves way for constellation of tropical-storm observers