Cheruvelil, K. S. & Soranno, P. A. Data-intensive ecological research is catalyzed by open science and team science. Bioscience 68, 813–822 (2018).
Google Scholar
Kelling, S. et al. Data-intensive science: a new paradigm for biodiversity studies. Bioscience 59, 613–620 (2009).
Google Scholar
Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
Google Scholar
Clarke, R. Big data, big risks. Inf. Syst. J. 26, 77–90 (2016).
Google Scholar
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
Google Scholar
Braccini, M., Molony, B. & Blay, N. Patterns in abundance and size of sharks in northwestern Australia: cause for optimism. ICES J. Mar. Sci. 77, 72–82 (2020).
Google Scholar
Larcombe, J., Caton, A., Wiliams, D. M. & Speare, P. Western Tuna and Billfish Fisheries Research (Bureau of Resource Sciences, Canberra 1997).
Larcombe, J. & Begg, G. Fishery Status Reports 2007. Status of Fish Stocks Managed by the Australian Government (Bureau of Rural Sciences, Canberra 2007).
Hobsbawn, P. I., Patterson, H. M. & Blake, S. A. P. Australian National Report to the Scientific Committee of the Indian Ocean Tuna Commission (ABARES, Canberra 2020).
Kaplan, R. M., Chambers, D. A. & Glasgow, R. E. Big data and large sample size: a cautionary note on the potential for bias. Clin. Transl. Sci. 7, 342–346 (2014).
Google Scholar
Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge? Front. Ecol. Evol. 6, 239 (2019).
Google Scholar
Braccini, M., Blay, N., Hesp, A. & Molony, B. Resource Assessment Report Temperate Demersal Elasmobranch Resource of Western Australia. Fisheries Research Report No. 294 (Department of Primary Industries and Regional Development, Perth, 2018).
Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).
Google Scholar
Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).
Google Scholar
R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
Source: Ecology - nature.com