Balcombe, P., Speirs, J. F., Brandon, N. P. & Hawkes, A. D. Methane emissions: choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 20, 1323–1339 (2018).
Google Scholar
Nisbet, E. G. et al. Rising atmospheric methane: 2007-2014 growth and isotopic shift. Glob. Biogeochem. Cycles 30, 1356–1370 (2016).
Google Scholar
Worden, J. R. et al. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 8, 2227 (2017).
Google Scholar
Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl Acad. Sci. 116, 2805–2813 (2019).
Google Scholar
Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).
Google Scholar
Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).
Google Scholar
Sanches, L. F., Guenet, B., Marinho, C. C., Barros, N. & de Assis Esteves, F. Global regulation of methane emission from natural lakes. Sci. Rep. 9, 255 (2019).
Google Scholar
Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).
Google Scholar
Günthel, M. et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. Commun. 10, 5497 (2019).
Google Scholar
Bogard, M. J. et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 5, 5350 (2014).
Google Scholar
Tang, K. W., McGinnis, D. F., Ionescu, D. & Grossart, H.-P. Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ. Sci. Technol. Lett. 3, 227–233 (2016).
Google Scholar
Donis, D. et al. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat. Commun. 8, 1661 (2017).
Google Scholar
Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W. & Tang, K. W. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc. Natl Acad. Sci. 108, 19657–19661 (2011).
Google Scholar
Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343 (2020).
Google Scholar
Del Sontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).
Google Scholar
Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).
Google Scholar
León-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. & Reche, I. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyll a in anoxic waters of reservoirs. Biogeosciences 17, 3223–3245 (2020).
Google Scholar
Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 108 (2020).
Google Scholar
Schagerl, M. Soda Lakes of East Africa. (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-28622-8.
Pecoraino, G., D’Alessandro, W. & Inguaggiato, S. The Other Side of the Coin: Geochemistry of Alkaline Lakes in Volcanic Areas. in Advances in Volcanology 219–237 (2015). https://doi.org/10.1007/978-3-642-36833-2_9.
Kempe, S. & Kazmierczak, J. Soda Lakes. in Encyclopedia of Geobiology (eds. Reitner, J. & Thiel, V.) 824–829 (Springer Netherlands, 2011). https://doi.org/10.1007/978-1-4020-9212-1_191.
Lunt, M. F. et al. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmos. Chem. Phys. Discuss. 19, 14721–14740 (2019).
Google Scholar
Tollefson, J. Tropical Africa could be a key to solving methane mystery. Nature 566, 165–166 (2019).
Google Scholar
Zorz, J. K. et al. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 10, 4230 (2019).
Google Scholar
Butturini, A. et al. Dissolved organic matter in a tropical saline-alkaline lake of the East African Rift Valley. Water Res. 173, 115532 (2020).
Google Scholar
Sorokin, D. Y. et al. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol. Ecol. 91, 1–12 (2015).
Juutinen, S. et al. Methane dynamics in different boreal lake types. Biogeosciences 6, 209–223 (2009).
Google Scholar
Encinas Fernández, J., Peeters, F. & Hofmann, H. On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J. Geophys. Res. Biogeosci. 121, 2717–2726 (2016).
Google Scholar
Bloom, A. A. et al. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 10, 2141–2156 (2017).
Google Scholar
Vo, T. B. T. et al. Methane emission from rice cultivation in different agro-ecological zones of the Mekong river delta: seasonal patterns and emission factors for baseline water management. Soil Sci. Plant Nutr. 64, 47–58 (2018).
Google Scholar
Devol, A. H., Richey, J. E., Forsberg, B. R. & Martinelli, L. A. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J. Geophys. Res. 95, 16417 (1990).
Google Scholar
Sha, C. et al. Methane emissions from freshwater riverine wetlands. Ecol. Eng. 37, 16–24 (2011).
Google Scholar
Sepulveda-Jauregui, A. et al. Eutrophication exacerbates the impact of climate warming on lake methane emission. Sci. Total Environ. 636, 411–419 (2018).
Google Scholar
Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: connecting whole-lake budgets and CH 4 emissions. J. Geophys. Res. Biogeosciences 113, 1–13 (2008).
Google Scholar
West, W. E., McCarthy, S. M. & Jones, S. E. Phytoplankton lipid content influences freshwater lake methanogenesis. Freshw. Biol. 60, 2261–2269 (2015).
Google Scholar
Grasset, C. et al. Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnol. Oceanogr. 63, 1488–1501 (2018).
Google Scholar
Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991).
Google Scholar
Pacheco, F., Roland, F. & Downing, J. Eutrophication reverses whole-lake carbon budgets. Inl. Waters 4, 41–48 (2014).
Google Scholar
Li, S., Bush, R. T., Ward, N. J., Sullivan, L. A. & Dong, F. Air–water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought. Sci. Total Environ. 542, 453–468 (2016).
Google Scholar
Melack, J. M., Kilham, P. & Fisher, T. R. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52, 321–326 (1982).
Google Scholar
Borges, A. V. et al. Variability of Carbon Dioxide and Methane in the Epilimnion of Lake Kivu. in Lake Kivu 47–66 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-4243-7_4.
Cerling, T. E. Pore water chemistry of an alkaline lake: Lake Turkana, Kenya. in The Limnology, Climatology and Paleoclimatology of the East African Lakes 225–240 (Routledge, 2019). https://doi.org/10.1201/9780203748978-12.
Hoefs, J. Stable Isotope Geochemistry. Stable Isotope Geochemistry: Sixth Edition (Springer Berlin Heidelberg, 2009). https://doi.org/10.1007/978-3-540-70708-0.
Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).
Google Scholar
Orellana, E. et al. Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste. Water Sci. Technol. 79, 1956–1965 (2019).
Google Scholar
Nobu, M. K., Narihiro, T., Kuroda, K., Mei, R. & Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).
Google Scholar
Vuillemin, A. et al. Metabolic potential of microbial communities from ferruginous sediments. Environ. Microbiol. 20, 4297–4313 (2018).
Google Scholar
Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).
Google Scholar
Appel, J., Phunpruch, S., Steinmüller, K. & Schulz, R. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173, 333–338 (2000).
Google Scholar
Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).
Google Scholar
Xiang, X. et al. Distribution of bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci. Rep. 7, 45028 (2017).
Google Scholar
McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).
Google Scholar
McGenity, T. J. & Sorokin, D. Y. Methanogens and methanogenesis in hypersaline environments. in Biogenesis of Hydrocarbons 1–27 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-53114-4_12-1.
Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).
Google Scholar
Wasmund, K. et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. Isme J. 8, 383 (2013).
Google Scholar
Fazi, S. et al. Microbiomes in soils exposed to naturally high concentrations of CO2 (Bossoleto Mofette Tuscany, Italy). Front. Microbiol. 10, 1–17 (2019).
Nolla-Ardèvol, V., Strous, M. & Tegetmeyer, H. E. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Front. Microbiol. 6, 1–21 (2015).
Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).
Google Scholar
Leygeber, M. et al. Analyzing microbial population heterogeneity—expanding the toolbox of microfluidic single-cell cultivations. J. Mol. Biol. 431, 4569–4588 (2019).
Google Scholar
Klawonn, I., Bonaglia, S., Brüchert, V. & Ploug, H. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J. 9, 1456–1466 (2015).
Google Scholar
Romero, L., Camacho, A., Vicente, E. & Miracle, M. R. Sedimentation patterns of photosynthetic bacteria based on pigment markers in meromictic Lake La Cruz (Spain): paleolimnological implications. J. Paleolimnol. 35, 167–177 (2006).
Google Scholar
Verschuren, D. Influence of depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44, 1103–1113 (1999).
Google Scholar
MacIntyre, S. & Melack, J. M. Meromixis in an equatorial African soda lake1. Limnol. Oceanogr. 27, 595–609 (1982).
Google Scholar
Tassi, F. et al. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS One 13, e0193914 (2018).
Google Scholar
Montegrossi, G., Tassi, F., Vaselli, O., Bidini, E. & Minissale, A. A new, rapid and reliable method for the determination of reduced sulphur (S2−) species in natural water discharges. Appl. Geochem. 21, 849–857 (2006).
Google Scholar
Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. https://doi.org/10.1016/0043-1354(78)90107-0 (1978).
Google Scholar
Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).
Google Scholar
Herzsprung, P. et al. Differences in DOM of rewetted and natural peatlands—results from high-field FT-ICR-MS and bulk optical parameters. Sci. Total Environ. 586, 770–781 (2017).
Google Scholar
Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).
Google Scholar
Mackenzie, F. T. & Lerman, A. Carbon in the Geobiosphere—Earth’s Outer Shell—. Carbon in the Geobiosphere—Earth’s Outer Shell—25, (Springer Netherlands, 2006).
Liss, P. S. & Slater, P. G. Flux of gases across the air-sea interface. Nature 247, 181–184 (1974).
Google Scholar
Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).
Google Scholar
Crusius, J. & Wanninkhof, R. Gas transfer velocities measured at low wind speed over a lake. Limnol. Oceanogr. 48, 1010–1017 (2003).
Google Scholar
Melack, J. M. & MacIntyre, S. Morphometry and physical processes of East African Soda Lakes. in Soda Lakes of East Africa 61–76 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-28622-8_3.
Hoover, T. E. & Berkshire, D. C. Effects of hydration on carbon dioxide exchange across an air-water interface. J. Geophys. Res. 74, 456–464 (1969).
Google Scholar
Wanninkhof, R. & Knox, M. Chemical enhancement of CO2 exchange in natural waters. Limnol. Oceanogr. 41, 689–697 (1996).
Google Scholar
Zeebe, R. E. On the molecular diffusion coefficients of dissolved, and and their dependence on isotopic mass. Geochim. Cosmochim. Acta 75, 2483–2498 (2011).
Google Scholar
Johnson, K. S. Carbon dioxide hydration and dehydration kinetics in seawater1. Limnol. Oceanogr. 27, 849–855 (1982).
Google Scholar
Clark, I. Groundwater Geochemistry and Isotopes. Groundwater Geochemistry and Isotopes (CRC Press, 2015). https://doi.org/10.1201/b18347.
Crognale, S. et al. Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Sci. Total Environ. 651, 93–102 (2019).
Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
Google Scholar
Tonanzi, B. et al. Long-term anaerobic digestion of food waste at semi-pilot scale: relationship between microbial community structure and process performances. Biomass-. Bioenergy 118, 55–64 (2018).
Google Scholar
Pechar, L. Use of an acetone: methanol mixture for the extraction and spectrophotometric determination of chlorophyll-a in phytoplankton. Stud. Hydrobiol. Suppl. 78, 99–117 (1987).
Google Scholar
Fazi, S., Amalfitano, S., Pizzetti, I. & Pernthaler, J. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content. Syst. Appl. Microbiol. 30, 463–470 (2007).
Google Scholar
Amalfitano, S. et al. Deconvolution model to resolve cytometric microbial community patterns in flowing waters. Cytom. Part A 93, 194–200 (2018).
Google Scholar
Callieri, C., Amalfitano, S., Corno, G. & Bertoni, R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol. Ecol. 92, 1–10 (2016).
Hammer, Ø., Harper, D. A. Ta. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF 6. Limnol. Oceanogr. 43, 647–656 (1998).
Google Scholar
Nightingale, P. D. et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).
Google Scholar
Source: Ecology - nature.com