Robbins, C. T. & Cunha, T. J. Wildlife Feeding and Nutrition (Elsevier Science, 2014).
Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).
Google Scholar
Barboza, P. S., Parker, K. L., & Hume, I. D. Integrative Wildlife Nutrition (Springer, 2009).
Google Scholar
Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).
Google Scholar
Baynham-Herd, Z., Redpath, S., Bunnefeld, N. & Keane, A. Predicting intervention priorities for wildlife conflicts. Conserv. Biol. 34, 232–243 (2020).
Google Scholar
Treves, A. & Santiago-Ávila, F. J. Myths and assumptions about human-wildlife conflict and coexistence. Conserv. Biol. 34, 811–818 (2020).
Google Scholar
Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: The role of geographical and environmental factors: Biogeographical variation in brown bear diet. Mammal Rev. 42, 120–143 (2012).
Google Scholar
Kavčič, I. et al. Fast food bears: Brown bear diet in a human-dominated landscape with intensive supplemental feeding. Wildl. Biol. 21, 1–8 (2015).
Google Scholar
Cozzi, G. et al. Anthropogenic food resources foster the coexistence of distinct life history strategies: Year-round sedentary and migratory brown bears. J. Zool. 300, 142–150 (2016).
Google Scholar
Lewis, D. L. et al. Foraging ecology of black bears in urban environments: Guidance for human-bear conflict mitigation. Ecosphere 6, art141 (2015).
Google Scholar
Naves, J., Fernández-Gil, A., Rodríguez, C. & Delibes, M. Brown bear food habits at the border of its range: A long-term study. J. Mammal. 87, 899–908 (2006).
Google Scholar
Rodríguez, C., Naves, J., Fernández-Gil, A., Obeso, J. R. & Delibes, M. Long-term trends in food habits of a relict brown bear population in northern Spain: The influence of climate and local factors. Environ. Conserv. 34, 36–44 (2007).
Google Scholar
Ciucci, P., Tosoni, E., Di Domenico, G., Quattrociocchi, F. & Boitani, L. Seasonal and annual variation in the food habits of Apennine brown bears, central Italy. J. Mammal. 95, 572–586 (2014).
Google Scholar
Reynolds-Hogland, M. J., Pacifici, L. B. & Mitchell, M. S. Linking resources with demography to understand resource limitation for bears: Linking resources and demography. J. Appl. Ecol. 44, 1166–1175 (2007).
Google Scholar
Robbins, C. T., Schwartz, C. C. & Felicetti, L. A. Nutritional ecology of ursids: A review of newer methods and management implications. Ursus 15, 161–171 (2004).
Google Scholar
Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. Resolving human-bear conflict: A global survey of countries, experts, and key factors: Human-bear conflict. Conserv. Lett. 7, 501–513 (2014).
Google Scholar
Hobson, K. A., McLellan, B. N. & Woods, J. G. Using stable carbon (δ 13C) and nitrogen (δ 15N) isotopes to infer trophic relationships among black and grizzly bears in the upper Columbia River basin, British Columbia. Can. J. Zool. 78, 1332–1339 (2000).
Google Scholar
Mowat, G. & Heard, D. C. Major components of grizzly bear diet across North America. Can. J. Zool. 84, 473–489 (2006).
Google Scholar
Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: A trade-off between nutritional requirements and the risk of infanticide?. Oecologia 138, 465–474 (2004).
Google Scholar
Hopkins, J. B. et al. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management. J. Wildl. Manag. 76, 703–713 (2012).
Google Scholar
Hata, A. et al. Stable isotope and DNA analyses reveal the spatial distribution of crop-foraging brown bears. J. Zool. 303, 207–217 (2017).
Google Scholar
Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630 (1999).
Google Scholar
Rode, K. D., Farley, S. D. & Robbins, C. T. Sexual dimorphism, reproductive strategy, and human activities determine resource use by brown bears. Ecology 87, 2636–2646 (2006).
Google Scholar
Hilderbrand, G. V. et al. Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 74, 2080–2088 (1996).
Google Scholar
Murray, M. H., Fassina, S., Hopkins, J. B., Whittington, J. & St. Clair, C. C. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos) in a national park. PLoS ONE 12, e0175658 (2017).
Google Scholar
Mizukami, R. N., Goto, M., Izumiyama, S., Hayashi, H. & Yoh, M. Estimation of feeding history by measuring carbon and nitrogen stable isotope ratios in hair of Asiatic black bears. Ursus 16, 93–101 (2005).
Google Scholar
Mizukami, R. N. et al. Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair. Isotopes Environ. Health Stud. 41, 87–94 (2005).
Google Scholar
Hopkins, J. B. & Kurle, C. M. Measuring the realized niches of animals using stable isotopes: From rats to bears. Methods Ecol. Evol. 7, 210–221 (2016).
Google Scholar
Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).
Google Scholar
Careddu, G., Calizza, E., Costantini, M. L. & Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 191, 106–114 (2017).
Google Scholar
Blasi, M. F. et al. Assessing resource use patterns of Mediterranean loggerhead sea turtles Caretta caretta (Linnaeus, 1758) through stable isotope analysis. Eur. Zool. J. 85, 71–87 (2018).
Google Scholar
Cicala, D. et al. Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53, 529–541 (2019).
Google Scholar
Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).
Google Scholar
Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).
Google Scholar
Hopkins, J. B. & Ferguson, J. M. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE 7, e28478 (2012).
Google Scholar
Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).
Google Scholar
Madeira, F. et al. Stable carbon and nitrogen isotope signatures to determine predator dispersal between alfalfa and maize. Biol. Control 77, 66–75 (2014).
Google Scholar
García-Vázquez, A., Pinto-Llona, A. C. & Grandal-d’Anglade, A. Brown bear (Ursus arctos L.) palaeoecology and diet in the Late Pleistocene and Holocene of the NW of the Iberian Peninsula: A study on stable isotopes. Quat. Int. 481, 42–51 (2018).
Google Scholar
Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).
Google Scholar
Felicetti, L. A. et al. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears. Can. J. Zool. 81, 763–770 (2003).
Google Scholar
Schwartz, C. C. et al. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: A reassessment. Wildl. Soc. Bull. 38, 664–670 (2014).
Google Scholar
Hopkins, J. B., Koch, P. L., Ferguson, J. M. & Kalinowski, S. T. The changing anthropogenic diets of American black bears over the past century in Yosemite National Park. Front. Ecol. Environ. 12, 107–114 (2014).
Google Scholar
Bentzen, T. W., Shideler, R. T. & O’Hara, T. M. Use of stable isotope analysis to identify food-conditioned grizzly bears on Alaska’s North Slope. Ursus 25, 14 (2014).
Google Scholar
Teunissen van Manen, J. L., Muller, L. I., Li, Z., Saxton, A. M. & Pelton, M. R. Using stable isotopes to assess dietary changes of American black bears from 1980 to 2001. Isotopes Environ. Health Stud. 50, 382–398 (2014).
Google Scholar
Braunstein, J. L., Clark, J. D., Williamson, R. H. & Stiver, W. H. Black bear movement and food conditioning in an exurban landscape. J. Wildl. Manag. 84, 1038–1050 (2020).
Google Scholar
Narita, R., Mano, T., Yokoyama, R. & Takayanagi, A. Variation in maize consumption by brown bears (Ursus arctos ) in two coastal areas of Hokkaido, Japan. Mammal Study 36, 33–39 (2011).
Google Scholar
Matsubayashi, J., Morimoto, J., Mano, T., Aryal, A. & Nakamura, F. Using stable isotopes to understand the feeding ecology of the Hokkaido brown bear (Ursus arctos) in Japan. Ursus 25, 87–97 (2014).
Google Scholar
Javornik, J. et al. Effects of ethanol storage and lipids on stable isotope values in a large mammalian omnivore. J. Mammal. 100, 150–157 (2019).
Google Scholar
Pauli, J. N., Whiteman, J. P., Riley, M. D. & Middleton, A. D. Defining noninvasive approaches for sampling of vertebrates. Conserv. Biol. 24, 349–352 (2010).
Google Scholar
Ueda, M. & Bell, L. S. Assessing dual hair sampling for isotopic studies of grizzly bears. Rapid Commun. Mass Spectrom. 33, 1475–1480 (2019).
Google Scholar
Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).
Google Scholar
Lerner, J. E. et al. Evaluating the use of stable isotope analysis to infer the feeding ecology of a growing US gray seal (Halichoerus grypus) population. PLoS ONE 13, e0192241 (2018).
Google Scholar
Woods, J. G. et al. Genetic tagging of free-ranging black and brown bears. Wildl. Soc. Bull. 1973–2006(27), 616–627 (1999).
Ciucci, P. et al. Estimating abundance of the remnant Apennine brown bear population using multiple noninvasive genetic data sources. J. Mammal. 96, 206–220 (2015).
Google Scholar
Kendall, K. C. et al. Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Sci. Rep. 9, 16804 (2019).
Google Scholar
Kendall, K. C. et al. Grizzly bear density in glacier National Park, Montana. J. Wildl. Manag. 72, 1693–1705 (2008).
Google Scholar
Darimont, C. T. & Reimchen, T. E. Intra-hair stable isotope analysis implies seasonal shift to salmon in gray wolf diet. Can. J. Zool. 80, 1638–1642 (2002).
Google Scholar
Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).
Google Scholar
Schwertl, M., Auerswald, K. & Schnyder, H. Reconstruction of the isotopic history of animal diets by hair segmental analysis. Rapid Commun. Mass Spectrom. 17, 1312–1318 (2003).
Google Scholar
Jones, E. S., Heard, D. C. & Gillingham, M. P. Temporal variation in stable carbon and nitrogen isotopes of grizzly bear guardhair and underfur. Wildl. Soc. Bull. 34, 1320–1325 (2006).
Google Scholar
Jacoby, M. E. et al. Trophic Relations of brown and black bears in several western North American ecosystems. J. Wildl. Manag. 63, 921 (1999).
Google Scholar
Jimbo, M. et al. Hair growth in brown bears and its application to ecological studies on wild bears. Mammal Study 45, 1–9 (2020).
Google Scholar
Mosbacher, J. B., Michelsen, A., Stelvig, M., Hendrichsen, D. K. & Schmidt, N. M. Show me your rump hair and I will tell you what you ate—the dietary history of muskoxen (Ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. PLoS ONE 11, e0152874 (2016).
Google Scholar
Hopkins, J. B., Ferguson, J. M., Tyers, D. B. & Kurle, C. M. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem. PLoS ONE 12, e0174903 (2017).
Google Scholar
Mowat, G., Curtis, P. J. & Lafferty, D. J. R. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears. PLoS ONE 12, e0172194 (2017).
Google Scholar
Adams, M. S. et al. Intrapopulation diversity in isotopic niche over landscapes: Spatial patterns inform conservation of bear–salmon systems. Ecosphere 8, e01843 (2017).
Google Scholar
Reimchen, T. E. & Klinka, D. R. Niche differentiation between coat colour morphs in the Kermode bear (Ursidae) of coastal British Columbia. Biol. J. Linn. Soc. 122, 274–285 (2017).
Google Scholar
Kaczensky, P. et al. Status, Management and Distribution of Large Carnivores—Bear, Lynx, Wolf & Wolverine—in Europe (Verlag nicht ermittelbar, 2013).
Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e del Mare, Roma 56, (2013).
Ciucci, P. & Boitani, L. The Apennine brown bear: A critical review of its status and conservation problems. Ursus 19, 130–145 (2008).
Google Scholar
Ciucci, P. et al. Distribution of the brown bear (Ursus arctos marsicanus) in the Central Apennines, Italy, 2005–2014. Hystrix Ital. J. Mammal. 28, 86–91 (2017).
Maiorano, L., Chiaverini, L., Falco, M. & Ciucci, P. Combining multi-state species distribution models, mortality estimates, and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biol. Conserv. 237, 19–27 (2019).
Google Scholar
Benazzo, A. et al. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl. Acad. Sci. 114, E9589–E9597 (2017).
Google Scholar
Gervasi, V. & Ciucci, P. Demographic projections of the Apennine brown bear population Ursus arctos marsicanus (Mammalia: Ursidae) under alternative management scenarios. Eur. Zool. J. 85, 242–252 (2018).
Google Scholar
Clevenger, A. P., Purroy, F. J. & Pelton, M. R. Food habits of brown bears (Ursus arctos) in the Cantabrian Mountains, Spain. J. Mammal. 73, 415–421 (1992).
Google Scholar
Servheen, C. Conservation of small bear populations through strategic planning. Ursus 10, 67–73 (1998).
Tosoni, E., Mei, M. & Ciucci, P. Ants as food for Apennine brown bears. Eur. Zool. J. 85, 342–348 (2018).
Google Scholar
Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651 (1990).
Google Scholar
Cameron, M. D. et al. Body size plasticity in North American black and brown bears. Ecosphere 11, e03235 (2020).
Google Scholar
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).
Google Scholar
Banner, K. M., Irvine, K. M. & Rodhouse, T. J. The use of Bayesian priors in Ecology: The good, the bad and the not great. Methods Ecol. Evol. 11, 882–889 (2020).
Google Scholar
Lemoine, N. P. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).
Google Scholar
Franco-Trecu, V. et al. Bias in diet determination: Incorporating traditional methods in Bayesian mixing models. PLoS ONE 8, e80019 (2013).
Google Scholar
Johnson, D. L., Henderson, M. T., Anderson, D. L., Booms, T. L. & Williams, C. T. Bayesian stable isotope mixing models effectively characterize the diet of an Arctic raptor. J. Anim. Ecol. 89, 2972–2985 (2020).
Google Scholar
Swan, G. J. F. et al. Evaluating Bayesian stable isotope mixing models of wild animal diet and the effects of trophic discrimination factors and informative priors. Methods Ecol. Evol. 11, 139–149 (2020).
Google Scholar
Ward, E. J., Semmens, B. X. & Schindler, D. E. Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ. Sci. Technol. 44, 4645–4650 (2010).
Google Scholar
Keis, M., Tammeleht, E., Valdmann, H. & Saarma, U. Ants in brown bear diet, and discovery of a new ant species for Estonia from brown bear scats. Hystrix Ital. J. Mammal. 30, 0 (2019).
Warlick, A. et al. Using Bayesian stable isotope mixing models and generalized additive models to resolve diet changes for fish-eating killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 649, 189–200 (2020).
Google Scholar
Derbridge, J. J. et al. Experimentally derived δ13C and δ15N discrimination factors for gray wolves and the impact of prior information in Bayesian mixing models. PLoS ONE 10, e0119940 (2015).
Google Scholar
Chiaradia, A., Forero, M. G., McInnes, J. C. & Ramírez, F. Searching for the true diet of marine predators: Incorporating Bayesian priors into stable isotope mixing models. PLoS ONE 9, e92665 (2014).
Google Scholar
Ciucci, P., Mancinelli, S., Boitani, L., Gallo, O. & Grottoli, L. Anthropogenic food subsidies hinder the ecological role of wolves: Insights for conservation of apex predators in human-modified landscapes. Glob. Ecol. Conserv. 21, e00841 (2020).
Google Scholar
Galluzzi, A., Donfrancesco, V., Mastrantonio, G., Sulli, C. & Ciucci, P. Cost of coexisting with a relict large carnivore population: Impact of Apennine brown bears, 2005–2015. Animals 11, 1453 (2021).
Google Scholar
Dahle, B., Sørensen, O. J., Wedul, E. H., Swenson, J. E. & Sandegren, F. The diet of brown bears Ursus arctos in central Scandinavia: Effect of access to free-ranging domestic sheep Ovis aries. Wildl. Biol. 4, 147–158 (1998).
Google Scholar
Persson, I.-L., Wikan, S., Swenson, J. E. & Mysterud, I. The diet of the brown bear Ursus arctos in the Pasvik Valley, northeastern Norway. Wildl. Biol. 7, 27–37 (2001).
Google Scholar
Welch, C. A., Keay, J., Kendall, K. C. & Robbins, C. T. Constraints on frugivory by bears. Ecology 78, 1105–1119 (1997).
Google Scholar
Rode, K. D., Robbins, C. T. & Shipley, L. A. Constraints on herbivory by grizzly bears. Oecologia 128, 62–71 (2001).
Google Scholar
Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).
Google Scholar
Orlandi, L. et al. The effects of nitrogen pollutants on the isotopic signal (δ 15N) of Ulva lactuca: Microcosm experiments. Mar. Pollut. Bull. 115, 429–435 (2017).
Google Scholar
Fiorentino, F. et al. Epilithon δ15N signatures indicate the origins of nitrogen loading and its seasonal dynamics in a volcanic Lake. Ecol. Indic. 79, 19–27 (2017).
Google Scholar
Noyce, K. V., Kannowski, P. B. & Riggs, M. R. Black bears as ant-eaters: Seasonal associations between bear myrmecophagy and ant ecology in north-central Minnesota. Can. J. Zool. 75, 1671–1686 (1997).
Google Scholar
Auger, J., Ogborn, G. L., Pritchett, C. L. & Black, H. L. selection of ants by the American black bear (Ursus americanos). West. North Am. Nat. 64, 166–174 (2004).
Fujiwara, S., Koike, S., Yamazaki, K., Kozakai, C. & Kaji, K. Direct observation of bear myrmecophagy: Relationship between bears’ feeding habits and ant phenology. Mamm. Biol. 78, 34–40 (2013).
Google Scholar
Elgmork, K. & Kaasa, J. Food habits and foraging of the brown bear Ursus arctos in central South Norway. Ecography 15, 101–110 (1992).
Google Scholar
Swenson, J. E., Jansson, A., Riig, R. & Sandegren, F. Bears and ants: Myrmecophagy by brown bears in central Scandinavia. Can. J. Zool. 77, 551–561 (1999).
Google Scholar
Costello, C. M. et al. Diet and macronutrient optimization in wild ursids: A comparison of grizzly bears with sympatric and allopatric black bears. PLoS ONE 11, e0153702 (2016).
Google Scholar
Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of southcentral Sweden. Wildl. Biol. 22, 107–116 (2016).
Google Scholar
Eagle, T. C. & Pelton, M. R. Seasonal nutrition of black bears in the Great Smoky Mountains National Park. Bears Their Biol. Manag. 5, 94 (1983).
Google Scholar
Redford, K. H. & Dorea, J. G. The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J. Zool. 203, 385–395 (2009).
Google Scholar
Rode, K. D. & Robbins, C. T. Why bears consume mixed diets during fruit abundance. Can. J. Zool. 78, 1640–1645 (2000).
Google Scholar
Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. Macronutrient optimization and energy maximization determine diets of brown bears. J. Mammal. 95, 160–168 (2014).
Google Scholar
Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).
Google Scholar
Mealey, S. P. The natural food habits of grizzly bears in Yellowstone National Park, 1973–74. Bears Biol. Manag. 4, 281 (1980).
Cicnjak, L., Huber, D., Roth, H. U., Ruff, R. L. & Vinovrski, Z. Food habits of brown bears in Plitvice Lakes National Park, Yugoslavia. Bears Biol. Manag. 7, 221 (1987).
Hamer, D. & Herrero, S. Grizzly bear food and habitat in the front ranges of Banff National Park, Alberta. Bears Biol. Manag. 7, 199 (1987).
McLellan, B. N. & Hovey, F. W. The diet of grizzly bears in the Flathead River drainage of southeastern British Columbia. Can. J. Zool. 73, 704–712 (1995).
Google Scholar
Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).
Google Scholar
Piovesan, G., Bernabei, M., Di Filippo, A., Romagnoli, M. & Schirone, B. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 21, 13–22 (2003).
Google Scholar
Mancinelli, S., Boitani, L. & Ciucci, P. Determinants of home range size and space use patterns in a protected wolf (Canis lupus) population in the central Apennines, Italy. Can. J. Zool. 96, 828–838 (2018).
Google Scholar
Gervasi, V. et al. Estimating survival in the Apennine brown bear accounting for uncertainty in age classification. Popul. Ecol. 59, 119–130 (2017).
Google Scholar
Hopkins, J. B. et al. A proposed lexicon of terms and concepts for human–bear management in North America. Ursus 21, 154–168 (2010).
Google Scholar
Costantini, M. L., Calizza, E. & Rossi, L. Stable isotope variation during fungal colonisation of leaf detritus in aquatic environments. Fungal Ecol. 11, 154–163 (2014).
Google Scholar
Rossi, L., di Lascio, A., Carlino, P., Calizza, E. & Costantini, M. L. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24 (2015).
Google Scholar
Ponsard, S. & Arditi, R. Detecting omnivory with δ15N. Trends Ecol. Evol. 16, 20–21 (2001).
Google Scholar
Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).
Google Scholar
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
Google Scholar
McElreath, R. Statistical rethinking: a Bayesian course with examples in R and Stan (Taylor and Francis, CRC Press, 2020).
Google Scholar
Stock, B., Jackson, A., Ward, E. & Venkiteswaran, J. Brianstock/Mixsiar 3.1.9. (Zenodo, 2018) https://doi.org/10.5281/ZENODO.1209993.
Koch, P. L. & Phillips, D. L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002). Oecologia 133, 14–18 (2002).
Google Scholar
Phillips, D. L. & Koch, P. L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125 (2002).
Google Scholar
Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).
Source: Ecology - nature.com