Jackson, C. & Robertson, M. Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records. J. Nat. Conserv. https://doi.org/10.1016/j.jnc.2010.06.006 (2011).
Google Scholar
Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2633–2641 (2011).
Google Scholar
Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Google Scholar
Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).
Google Scholar
Ouyang, Z., Liu, J., Xiao, H., Tan, Y. & Zhang, H. An assessment of giant panda habitat in Wolong Nature Reserve. Acta Ecol. Sin. 11, 1869–1874 (2001).
Schadt, S. et al. Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. J. Appl. Ecol. 39, 189–203 (2002).
Google Scholar
Su, J., Aryal, A., Nan, Z. & Ji, W. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS One 10, e0138969 (2015).
Google Scholar
Srivastava, V., Griess, V. C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol. Model. 385, 35–44 (2018).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).
Google Scholar
Clements, G. R. et al. Predicting the distribution of the Asian Tapir (Tapirus indicus) in Peninsular Malaysia using maximum entropy modelling. Integr. Zool. 7, 400–406 (2012).
Google Scholar
Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 12, 2272–2281 (2006).
Google Scholar
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).
Google Scholar
Cassini, M. H. Ecological principles of species distribution models: The habitat matching rule. 2057–2065. https://doi.org/10.1111/j.1365-2699.2011.02552.x (2011).
Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
Mac Nally, R. Regression and model-building in conservation biology, biogeography and ecology: The distinction between–and reconciliation of–‘predictive’ and ‘explanatory’models. Biodivers. Conserv. 9, 655–671 (2000).
Google Scholar
Jaynes, E. T. Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957).
Google Scholar
Jaynes, E. T. Probability Theory as Logic BT – Maximum Entropy and Bayesian Methods. In (ed. Fougère, P. F.) 1–16 (Springer, Netherlands, 1990). https://doi.org/10.1007/978-94-009-0683-9_1.
Jaynes, E. T. Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003).
Google Scholar
Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).
Google Scholar
Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography (Cop.). 30, 550–560 (2007).
Google Scholar
Ganeshaiah, K. N. et al. Predicting the potential geographical distribution of the sugarcane woolly aphid Using GARP and DIVA-GIS. Curr. Sci. 85, 1526–1528 (2003).
Underwood, E. C., Klinger, R. & Moore, P. E. Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Divers. Distrib. 10, 447–459 (2004).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).
Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).
Google Scholar
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Google Scholar
Bhatta, M., Shah, K., Devkota, B., Paudel, R. & Panthi, S. Distribution and habitat preference of Red Panda (Ailurus fulgens fulgens) in Jumla District, Nepal. Open J. Ecol. 04, 989–1001 (2014).
Google Scholar
Bista, D. et al. Distribution and habitat use of red panda in the Chitwan-Annapurna Landscape of Nepal. PLoS One 12, e0178797 (2017).
Google Scholar
Bista, R. & Aryal, A. Status of the Asiatic black bear Ursus thibetanus in the southeastern region of the Annapurna Conservation Area, Nepal. Zool. Ecol. 23 (2013).
Garshelis, D. & Steinmetz, R. Ursus thibetanus. (errata version published in 2017) The IUCN Red List of Threatened Species. 2016: e. T22824A114252336. (2016).
Bista, M., Panthi, S. & Weiskopf, S. R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. https://doi.org/10.1371/journal.pone.0203697 (2018).
CITES. Asiatic Black bear. Convention on International Trade in Endangered Species of Wild Fauna and Flora https://www.cites.org/eng/gallery/species/mammal/Asiatic_black_bear.html (2019a).
CITES. Lesser Panda. Convention on International Trade in Endangered Species of Wild Fauna and Flora https://www.cites.org/eng/gallery/species/mammal/lesser_panda.html (2019b).
Garshelis, Scheick, B., Doan-Crider, D., Beecham & Obbard, M. Ursus americanus, American Black Bear. The IUCN Red List of Threatened Species 2016: e.T41687A45034604. (2016). https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41687A45034604.en.
Chhetri, M. Distribution and abundance of Himalayan black bear and brown bear conflict in Manaslu conservation area. https://ntnc.org.np/index.php/publication/distribution-and-ambundance-himalayan-black-bear-and-brown-bear-and-human-bear-conflict (2013).
Ali, A. et al. An assessment of food habits and altitudinal distribution of the Asiatic black bear (Ursus thibetanus) in the Western Himalayas, Pakistan. J. Nat. Hist. 51, 689–701 (2017).
Google Scholar
Glatston, A., Wei, F., Zaw, T. & Sherpa, A. P. IUCN red list of threatened species: Ailurus fulgens. (2015).
Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).
Google Scholar
Chakraborty, R. et al. Status, abundance, and habitat associations of the red panda (Ailurus fulgens) in Pangchen Valley, Arunachal Pradesh, India. Mammalia 79, 25–32 (2015).
Dorji, S., Vernes, K. & Rajaratnam, R. Habitat correlates of the red panda in the temperate forests of Bhutan. PLoS One 6, e26483 (2011).
Google Scholar
Panthi, S., Aryal, A., Raubenheimer, D., Lord, J. & Adhikari, B. Summer diet and distribution of the Red Panda (Ailurus fulgens fulgens) in Dhorpatan hunting reserve, Nepal. Zool. Stud. 51, 701–709 (2012).
Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Conserv. 98, 11–18 (2001).
Google Scholar
Acharya, K. P., Paudel, P. K., Neupane, P. R. & Köhl, M. Human-wildlife conflicts in Nepal: Patterns of human fatalities and injuries caused by large mammals. PLoS One 11, e0161717 (2016).
Google Scholar
Liu, Z. et al. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling. Acta Ecol. Sin. 33, 7243–7249 (2013).
Google Scholar
Bhusal, N. P. Buffer zone management system in protected areas of Nepal. Third Pole J. Geogr. Educ. 34–44 (2012).
Carpenter, C. & Zomer, R. Forest ecology of the Makalu-Barun National Park and conservation area, Nepal. Mt. Res. Dev. 16, 135–148 (1996).
Google Scholar
Bhuju, U. R., Shakya, P. R., Basnet, T. B. & Shrestha, S. Nepal biodiversity resource book: Protected areas, Ramsar sites, and World Heritage sites. (International Centre for Integrated Mountain Development (ICIMOD), 2007).
Wikipedia. Makalu Barun National Park. https://en.wikipedia.org/w/index.php?title=Makalu_Barun_National_Park&oldid=1022613383 (2020).
Bista, M., Panthi, S. & Weiskopf, S. R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 13, e0203697 (2018).
Google Scholar
Chen, X. & Lei, Y. Effects of sample size on accuracy and stability of species distribution models. A Comparison of GARP and Maxent BT – Recent Advances in Computer Science and Information Engineering, Volume 2. in (eds. Qian, Z. et al.) 601–609 (Springer, Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-25789-6_80.
Google Scholar
Zomer, R., Ustin, S. & Ives, J. Using satellite remote sensing for DEM extraction in complex mountainous terrain: Landscape analysis of the Makalu Barun National Park of eastern Nepal. Int. J. Remote Sens. 23, 125–143 (2002).
Google Scholar
Shao, Y. & Lunetta, R. S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 70, 78–87 (2012).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).
Google Scholar
Steven, J. P., Miroslav, D. & Robert, E. S. Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/Maxent/.
Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography (Cop.) 31, 272–278 (2008).
Google Scholar
Boral, D. & Moktan, S. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: Current and future scenarios. Ecol. Process. 10, 1–16 (2021).
Google Scholar
Pasquale, G. D. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).
Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Google Scholar
Adjemian, J. C. Z., Girvetz, E. H., Beckett, L. & Foley, J. E. Analysis of genetic algorithm for rule-set production (GARP) modeling approach for predicting distributions of fleas implicated as vectors of Plague, Yersinia pestis, California. J. Med. Entomol. 43, 93–103 (2006).
Google Scholar
Barro, A. S. et al. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis. PLoS Negl. Trop. Dis. 10, e0004689 (2016).
Google Scholar
Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).
Google Scholar
Babar, S., Giriraj, A., Reddy, C. S., Jentsch, A. & Sudhakar, S. Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L.f.). Curr. Sci. 102, 1157–1165 (2012).
Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. 30, 224–235 (2010).
Google Scholar
Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. (2021).
Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).
Google Scholar
Chikerema, S., Gwitira, I., Murwira, A., Pfukenyi, D. & Matope, G. Comparison of GARP and Maxent in modelling the geographic distribution of Bacillus anthracis in Zimbabwe. Zimbabwe Vet. J. 35, 1–6 (2017).
Ray, D., Behera, M. D. & Jacob, J. Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 88, 1337–1343 (2018).
Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).
Jnawali, S. R. et al. The Status of Nepal’s Mammals: The National Red List Series-IUCN (2011).
Panthi, S., Wang, T., Sun, Y. & Thapa, A. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya. Ecol. Evol. 9, 13413–13425 (2019).
Google Scholar
Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704–1711 (2006).
Google Scholar
Randin, C. F. et al. Are niche-based species distribution models transferable in space?. J. Biogeogr. 33, 1689–1703 (2006).
Google Scholar
Panthi, S., Aryal, A. & Coogan, S. C. P. Diet and macronutrient niche of Asiatic black bear (Ursus thibetanus) in two regions of Nepal during summer and autumn. Ecol. Evol. 9, 3717–3727 (2019).
Google Scholar
Thapa, A. et al. The endangered red panda in Himalayas: Potential distribution and ecological habitat associates. Glob. Ecol. Conserv. 21, e00890 (2020).
Google Scholar
Shailendra. Human-Bear Conflicts Biological Research Himalayan Black Bear Discovered in Babai Valley of Bardia National. 26, 1999–2001 (2017).
Acharya, K. P. et al. Pervasive human disturbance on habitats of endangered red panda Ailurus fulgens in the central Himalaya. Glob. Ecol. Conserv. 15, e00420 (2018).
Google Scholar
Letro, L., Wangchuk, S. & Dhendup, T. Distribution of Asiatic black bear and its interaction with humans in Jigme Singye Wangchuck National Park, Bhutan. Nat. Conserv. Res. 5, 44–52 (2020).
Google Scholar
Karki, S. T. Do protected areas and conservation incentives contribute to sustainable livelihoods? A case study of Bardia National Park, Nepal. 988–999.
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
Google Scholar
Source: Ecology - nature.com