Gubler, D. J. Prevention and control of Aedes aegypti-borne diseases: lesson learned from past successes and failures. AsPac. J. Mol. Biol. Biotechnol. 19, 111–114 (2011).
Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227. https://doi.org/10.1111/j.0269-283X.2004.00513.x (2004).
Google Scholar
Unlu, I. Aedes albopictus in America: current perspectives and future challenges. CAB Rev. 14, 1–22 (2019).
Google Scholar
Schoof, H. Dispersal of Aedes taeniorhynchus Wiede-mann near Savannah. Georgia. Mosq. News 23, 1–10 (1963).
Fonseca, D. M. et al. Area-wide management of Aedes albopictus. Part 2: gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag. Sci. 69, 1351–1361 (2013).
Google Scholar
YiBin, Z., TongYan, Z. & PeiEn, L. Evaluation on the control efficacy of source reduction to Aedes albopictus in Shanghai, China. Chin. J. Vector Biol. Control 20, 3–6 (2009).
Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L. & Farajollahi, A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS ONE 8, e60874. https://doi.org/10.1371/journal.pone.0060874 (2013).
Google Scholar
Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl. 1, 1–39 (1988).
Google Scholar
Richards, S. L., Ghosh, S. K., Zeichner, B. C. & Apperson, C. S. Impact of source reduction on the spatial distribution of larvae and pupae of Aedes albopictus (Diptera: Culicidae) in suburban neighborhoods of a Piedmont community in North Carolina. J. Med. Entomol. 45, 617–628 (2008).
Google Scholar
Unlu, I., Farajollahi, A., Strickman, D. & Fonseca, D. M. Crouching tiger, hidden trouble: Urban sources of Aedes albopictus (Diptera: Culicidae) refractory to source-reduction. PLoS ONE 8, e77999 (2013).
Google Scholar
Lam, P. H. Y., Boon, C. S., Yng, N. Y. & Benjamin, S. Aedes albopictus control with spray application of Bacillus thuringiensis israelensis, strain AM 65-52. Southeast Asian J. Trop. Med. Public Health 41, 1071 (2010).
Google Scholar
Seleena, P., Lee, H. L., Nazni, W., Rohani, A. & Kadri, M. Microdroplet application of mosquitocidal Bacillus thuringiensis using ultra-low-volume generator for the control of mosquitos. Southeast Asian. J. Trop. Med. Public Health 27, 628–632 (1996).
Google Scholar
Chandel, K. et al. Targeting a hidden enemy: Pyriproxyfen autodissemination strategy for the control of the container mosquito Aedes albopictus in cryptic habitats. PLoS Negl. Trop. Dis. 10, e0005235 (2016).
Google Scholar
Pruszynski, C. A., Hribar, L. J., Mickle, R. & Leal, A. L. A large scale biorational approach using Bacillus thuringiensis israeliensis (strain AM65-52) for managing Aedes aegypti populations to prevent dengue, chikungunya and Zika transmission. PLoS ONE 12, e0170079 (2017).
Google Scholar
Unlu, I., Faraji, A., Indelicato, N. & Fonseca, D. M. The hidden world of Asian tiger mosquitoes: immature Aedes albopictus (Skuse) dominate in rainwater corrugated extension spouts. Trans. R. Soc. Trop. Med. Hyg. 108, 699–705. https://doi.org/10.1093/trstmh/tru1139 (2014).
Google Scholar
Itoh, T. Utilization of blood fed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator, pyriproxyfen, to larval habitats. Trop. Med. 36, 243–248 (1995).
Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45 (2012).
Google Scholar
Mbare, O., Lindsay, S. W. & Fillinger, U. Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release-and-kill strategy for malaria vector control. BMC Infect. Dis. 19, 1–12 (2019).
Google Scholar
Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).
Google Scholar
Caputo, B. et al. The “auto-dissemination” approach: a novel concept to fight Aedes albopictus in urban areas. PLoS Negl. Trop. Dis. 6, e1793 (2012).
Google Scholar
Lwetoijera, D., Kiware, S., Okumu, F., Devine, G. J. & Majambere, S. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malar. J. 18, 1–10 (2019).
Google Scholar
Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature Asian Tiger Mosquito (Diptera: Culicidae) populations. J. Med. Entomol. 57, 1120–1130 (2020).
Google Scholar
Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406–e0003406 (2015).
Google Scholar
Bibbs, C. S., Anderson, C. S., Smith, M. L. & Xue, R.-D. Direct and indirect efficacy of truck-mounted applications of s-methoprene against Aedes albopictus (Diptera: Culicidae). Int. J. Pest Manag. 64, 19–26 (2018).
Google Scholar
Wang, Y. et al. Heterodissemination: precision targeting container Aedes mosquitoes with a cohabiting midge species carrying insect growth regulator. Pest Manag. Sci. 76, 2105–2112 (2020).
Google Scholar
Lopez, L. C. S., Filizola, B., Deiss, I. & Rios, R. I. Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia 549, 15–22 (2005).
Google Scholar
Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).
Google Scholar
Wilke, A. B., Vasquez, C., Mauriello, P. J. & Beier, J. C. Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 11, 1–7 (2018).
Google Scholar
Council, N. R. Guide for the Care and Use of Laboratory Animals (National Academies Press, Washington, 2010).
Unlu, I. et al. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasit. Vectors 10, 1–10 (2017).
Google Scholar
Unlu, I. et al. Effects of a red marker dye on Aedes and Culex larvae: are there implications for operational mosquito control?. J. Am. Mosq. Control Assoc. 31, 375–379 (2015).
Google Scholar
Development, R. & Team, C. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria ( https://www.R-project.org/ ) (2019).
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1 (2014).
Crawley, M. J. The R Book (Wiley, Chichester, 2012).
Google Scholar
Lenth, R. V. Using lsmeans. J. Stat. Softw. 69, 1–33 (2017).
Plummer, M. in Proceedings of the 3rd international workshop on distributed statistical computing. 1–10 (Vienna, Austria.).
Kellner, K. jagsUI: a wrapper around rjags to streamline JAGS analyses. R Package Vers. 1, 2015 (2015).
Khan, G. Z., Khan, I., Khan, I. A., Salman, M. & Ullah, K. Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Asian. Pac. J. Trop. Biomed. 6, 485–491 (2016).
Google Scholar
Bury, R. B. & Whelan, J. A. Ecology and Management of the Bullfrog Vol. 155 (Fish and Wildlife Service, Washington, 1985).
WHO. Review of the insect growth regulator pyriproxyfen GR, pp. 50–67. InReport of the 4th WHOPES Working Group Meeting, 2000 December 4–5, Geneva Switzerland Geneva. WHO/CDS, WHOPES/2001. (2001).
Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 1–17 (2020).
Schaefer, C. & Miura, T. Chemical persistence and effects of S-31183, 2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine, on aquatic organisms in field tests. J. Econ. Entomol. 83, 1768–1776 (1990).
Google Scholar
Ose, K., Miyamoto, M., Fujisawa, T. & Katagi, T. Bioconcentration and metabolism of pyriproxyfen in tadpoles of African clawed frogs, Xenopus laevis. J. Agric. Food Chem. 65, 9980–9986 (2017).
Google Scholar
Lajmanovich, R. C. et al. Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynus americanus tadpoles. Chemosphere 220, 714–722 (2019).
Google Scholar
https://edis.ifas.ufl.edu/uw259. The Cuban Treefrog (Osteopilus septentrionalis) in Florida. This document is WEC218, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. (2017).
Glorioso, B. M. et al. Osteopilus septentrionalis (Cuban treefrog). Herpetol. Rev. 49, 70–71 (2018).
Wermelinger, E. D. & Carvalho, RWd. Methods and procedures used in Aedes aegypti control in the successful campaign for yellow fever prophylaxis in Rio de Janeiro, Brazil, in 1928 and 1929. Epidemiol. Serv. Saude. 25, 837–844 (2016).
Google Scholar
Santos França, L. et al. Challanges for the control and prevention of the Aedes aegypti mosquito. Rev. Enferm. UFPE. 11, 4913 (2017).
Google Scholar
Minakawa, N., Mutero, C. M., Githure, J. I., Beier, J. C. & Yan, G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am. J. Trop. Med. Hyg. 61, 1010–1016 (1999).
Google Scholar
Mutuku, F. M. et al. Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am. J. Trop. Med. Hyg. 74, 54–61 (2006).
Google Scholar
Source: Ecology - nature.com