in

Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates

  • 1.

    Gubler, D. J. Prevention and control of Aedes aegypti-borne diseases: lesson learned from past successes and failures. AsPac. J. Mol. Biol. Biotechnol. 19, 111–114 (2011).

    Google Scholar 

  • 2.

    Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227. https://doi.org/10.1111/j.0269-283X.2004.00513.x (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Unlu, I. Aedes albopictus in America: current perspectives and future challenges. CAB Rev. 14, 1–22 (2019).

    Article 

    Google Scholar 

  • 4.

    Schoof, H. Dispersal of Aedes taeniorhynchus Wiede-mann near Savannah. Georgia. Mosq. News 23, 1–10 (1963).

    Google Scholar 

  • 5.

    Fonseca, D. M. et al. Area-wide management of Aedes albopictus. Part 2: gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag. Sci. 69, 1351–1361 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    YiBin, Z., TongYan, Z. & PeiEn, L. Evaluation on the control efficacy of source reduction to Aedes albopictus in Shanghai, China. Chin. J. Vector Biol. Control 20, 3–6 (2009).

    Google Scholar 

  • 7.

    Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L. & Farajollahi, A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS ONE 8, e60874. https://doi.org/10.1371/journal.pone.0060874 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl. 1, 1–39 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Richards, S. L., Ghosh, S. K., Zeichner, B. C. & Apperson, C. S. Impact of source reduction on the spatial distribution of larvae and pupae of Aedes albopictus (Diptera: Culicidae) in suburban neighborhoods of a Piedmont community in North Carolina. J. Med. Entomol. 45, 617–628 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Unlu, I., Farajollahi, A., Strickman, D. & Fonseca, D. M. Crouching tiger, hidden trouble: Urban sources of Aedes albopictus (Diptera: Culicidae) refractory to source-reduction. PLoS ONE 8, e77999 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Lam, P. H. Y., Boon, C. S., Yng, N. Y. & Benjamin, S. Aedes albopictus control with spray application of Bacillus thuringiensis israelensis, strain AM 65-52. Southeast Asian J. Trop. Med. Public Health 41, 1071 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Seleena, P., Lee, H. L., Nazni, W., Rohani, A. & Kadri, M. Microdroplet application of mosquitocidal Bacillus thuringiensis using ultra-low-volume generator for the control of mosquitos. Southeast Asian. J. Trop. Med. Public Health 27, 628–632 (1996).

    CAS 

    Google Scholar 

  • 13.

    Chandel, K. et al. Targeting a hidden enemy: Pyriproxyfen autodissemination strategy for the control of the container mosquito Aedes albopictus in cryptic habitats. PLoS Negl. Trop. Dis. 10, e0005235 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Pruszynski, C. A., Hribar, L. J., Mickle, R. & Leal, A. L. A large scale biorational approach using Bacillus thuringiensis israeliensis (strain AM65-52) for managing Aedes aegypti populations to prevent dengue, chikungunya and Zika transmission. PLoS ONE 12, e0170079 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Unlu, I., Faraji, A., Indelicato, N. & Fonseca, D. M. The hidden world of Asian tiger mosquitoes: immature Aedes albopictus (Skuse) dominate in rainwater corrugated extension spouts. Trans. R. Soc. Trop. Med. Hyg. 108, 699–705. https://doi.org/10.1093/trstmh/tru1139 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Itoh, T. Utilization of blood fed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator, pyriproxyfen, to larval habitats. Trop. Med. 36, 243–248 (1995).

    Google Scholar 

  • 17.

    Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Mbare, O., Lindsay, S. W. & Fillinger, U. Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release-and-kill strategy for malaria vector control. BMC Infect. Dis. 19, 1–12 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Caputo, B. et al. The “auto-dissemination” approach: a novel concept to fight Aedes albopictus in urban areas. PLoS Negl. Trop. Dis. 6, e1793 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Lwetoijera, D., Kiware, S., Okumu, F., Devine, G. J. & Majambere, S. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malar. J. 18, 1–10 (2019).

    Article 

    Google Scholar 

  • 22.

    Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature Asian Tiger Mosquito (Diptera: Culicidae) populations. J. Med. Entomol. 57, 1120–1130 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406–e0003406 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Bibbs, C. S., Anderson, C. S., Smith, M. L. & Xue, R.-D. Direct and indirect efficacy of truck-mounted applications of s-methoprene against Aedes albopictus (Diptera: Culicidae). Int. J. Pest Manag. 64, 19–26 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Wang, Y. et al. Heterodissemination: precision targeting container Aedes mosquitoes with a cohabiting midge species carrying insect growth regulator. Pest Manag. Sci. 76, 2105–2112 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Lopez, L. C. S., Filizola, B., Deiss, I. & Rios, R. I. Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia 549, 15–22 (2005).

    Article 

    Google Scholar 

  • 27.

    Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Wilke, A. B., Vasquez, C., Mauriello, P. J. & Beier, J. C. Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 11, 1–7 (2018).

    Article 

    Google Scholar 

  • 29.

    Council, N. R. Guide for the Care and Use of Laboratory Animals (National Academies Press, Washington, 2010).

    Google Scholar 

  • 30.

    Unlu, I. et al. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasit. Vectors 10, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Unlu, I. et al. Effects of a red marker dye on Aedes and Culex larvae: are there implications for operational mosquito control?. J. Am. Mosq. Control Assoc. 31, 375–379 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Development, R. & Team, C. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria ( https://www.R-project.org/ ) (2019).

  • 33.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1 (2014).

  • 34.

    Crawley, M. J. The R Book (Wiley, Chichester, 2012).

    MATH 
    Book 

    Google Scholar 

  • 35.

    Lenth, R. V. Using lsmeans. J. Stat. Softw. 69, 1–33 (2017).

    Google Scholar 

  • 36.

    Plummer, M. in Proceedings of the 3rd international workshop on distributed statistical computing. 1–10 (Vienna, Austria.).

  • 37.

    Kellner, K. jagsUI: a wrapper around rjags to streamline JAGS analyses. R Package Vers. 1, 2015 (2015).

    Google Scholar 

  • 38.

    Khan, G. Z., Khan, I., Khan, I. A., Salman, M. & Ullah, K. Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Asian. Pac. J. Trop. Biomed. 6, 485–491 (2016).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Bury, R. B. & Whelan, J. A. Ecology and Management of the Bullfrog Vol. 155 (Fish and Wildlife Service, Washington, 1985).

    Google Scholar 

  • 40.

    WHO. Review of the insect growth regulator pyriproxyfen GR, pp. 50–67. InReport of the 4th WHOPES Working Group Meeting, 2000 December 4–5, Geneva Switzerland Geneva. WHO/CDS, WHOPES/2001. (2001).

  • 41.

    Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 1–17 (2020).

  • 42.

    Schaefer, C. & Miura, T. Chemical persistence and effects of S-31183, 2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine, on aquatic organisms in field tests. J. Econ. Entomol. 83, 1768–1776 (1990).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Ose, K., Miyamoto, M., Fujisawa, T. & Katagi, T. Bioconcentration and metabolism of pyriproxyfen in tadpoles of African clawed frogs, Xenopus laevis. J. Agric. Food Chem. 65, 9980–9986 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Lajmanovich, R. C. et al. Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynus americanus tadpoles. Chemosphere 220, 714–722 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    https://edis.ifas.ufl.edu/uw259. The Cuban Treefrog (Osteopilus septentrionalis) in Florida. This document is WEC218, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. (2017).

  • 46.

    Glorioso, B. M. et al. Osteopilus septentrionalis (Cuban treefrog). Herpetol. Rev. 49, 70–71 (2018).

    Google Scholar 

  • 47.

    Wermelinger, E. D. & Carvalho, RWd. Methods and procedures used in Aedes aegypti control in the successful campaign for yellow fever prophylaxis in Rio de Janeiro, Brazil, in 1928 and 1929. Epidemiol. Serv. Saude. 25, 837–844 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Santos França, L. et al. Challanges for the control and prevention of the Aedes aegypti mosquito. Rev. Enferm. UFPE. 11, 4913 (2017).

    Article 

    Google Scholar 

  • 49.

    Minakawa, N., Mutero, C. M., Githure, J. I., Beier, J. C. & Yan, G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am. J. Trop. Med. Hyg. 61, 1010–1016 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Mutuku, F. M. et al. Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am. J. Trop. Med. Hyg. 74, 54–61 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Infrared cameras and artificial intelligence provide insight into boiling

    Engineering seeds to resist drought