in

Quantum inspired community detection for analysis of biodiversity change driven by land-use conversion and climate change

  • 1.

    Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications Vol. 8 (Cambridge University Press, 1994).

    MATH 
    Book 

    Google Scholar 

  • 2.

    Knoke, D. & Yang, S. Social Network Analysis Vol. 154 (Sage Publications, 2019).

    Google Scholar 

  • 3.

    Schaub, M. T., Delvenne, J. C., Rosvall, M. & Lambiotte, R. The many facets of community detection in complex networks. Appl. Netw. Sci. 2(1), 4 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Papadopoulos, S., Kompatsiaris, Y., Vakali, A. & Spyridonos, P. Community detection in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012).

    Article 

    Google Scholar 

  • 5.

    Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94(1), 16–36 (2019).

    Article 

    Google Scholar 

  • 7.

    Creamer, R. E. et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil Ecol. 97, 112–124 (2016).

    Article 

    Google Scholar 

  • 8.

    Gogaladze, A. et al. Using social network analysis to assess the Pontocaspian biodiversity conservation capacity in Ukraine. Ecol. Soc. 25(2), 25 (2020).

    Article 

    Google Scholar 

  • 9.

    Braunisch, V. et al. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 36(9), 971–983 (2013).

    Article 

    Google Scholar 

  • 10.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353(6304), 8466 (2016).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change 1(6), 313–318 (2011).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Article 

    Google Scholar 

  • 13.

    Smith, R. et al. Ensuring Co-benefits for biodiversity, climate change and sustainable development. In Handbook of Climate Change and Biodiversity (eds Filho, W. L. et al.) 151–166 (Springer, 2019).

    Chapter 

    Google Scholar 

  • 14.

    Rands, M. R. et al. Biodiversity conservation: Challenges beyond 2010. Science 329(5997), 1298–1303 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl. Acad. Sci. 117(29), 17074–17083 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Greenwood, G. W. Finding solutions to NP problems: Philosophical differences between quantum and evolutionary search algorithms. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) Vol 2, 815–822 (IEEE, 2001).

  • 17.

    Kaminsky, W. M. & Lloyd, S. Scalable architecture for adiabatic quantum computing of NP-hard problems. In Quantum Computing and Quantum Bits in Mesoscopic Systems (eds Leggett, A. J. et al.) 229–236 (Springer, 2004).

    Chapter 

    Google Scholar 

  • 18.

    Brandes, U. et al. (2006). Maximizing modularity is hard. arXiv preprint physics/0608255.

  • 19.

    Fortunato, S. Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 20.

    Lev S. Bishop https://developer.ibm.com/code/videos/qiskit-quantum-computing-tech-talk/.

  • 21.

    De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: A review. Glob. Environ. Change 19(2), 306–315 (2009).

    Article 

    Google Scholar 

  • 22.

    Bello, G. A. et al. Response-guided community detection: Application to climate index discovery. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases 736–751 (Springer, 2015).

  • 23.

    Steinhaeuser, K., Chawla, N. V. & Ganguly, A. R. (2009). An exploration of climate data using complex networks. In Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data 23–31.

  • 24.

    Ceron, W., Santos, L. B., Neto, G. D., Quiles, M. G. & Candido, O. A. Community detection in very high-resolution meteorological networks. IEEE Geosci. Remote Sens. Lett. 17(11), 2007–2010 (2019).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Sekulić, S., Data, B. E. G., Long, J. & Demšar, U. Geographical context in community detection: A comparison of a node-based and a link-based approach.

  • 26.

    Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Strehl, A. & Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002).

    MathSciNet 
    MATH 

    Google Scholar 

  • 29.

    Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2(1), 193–218 (1985).

    MATH 
    Article 

    Google Scholar 

  • 30.

    Stumpf, M. P. & Wiuf, C. Sampling properties of random graphs: The degree distribution. Phys. Rev. E 72(3), 036118 (2005).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Kumar, R., Novak, J. & Tomkins, A. Structure and evolution of online social networks. In Link Mining: Models, Algorithms, and Applications (eds Yu, P. et al.) 337–357 (Springer, 2010).

    Chapter 

    Google Scholar 

  • 32.

    Bródka, P., Skibicki, K., Kazienko, P. & Musiał, K. A degree centrality in multi-layered social network. In 2011 International Conference on Computational Aspects of Social Networks (CASoN) 237–242 (IEEE, 2011).

  • 33.

    Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007).

    Article 

    Google Scholar 

  • 34.

    Chakraborty, T., Dalmia, A., Mukherjee, A. & Ganguly, N. Metrics for community analysis: A survey. ACM Comput. Surv. (CSUR) 50(4), 1–37 (2017).

    Article 

    Google Scholar 

  • 35.

    Freeman, L. The development of social network analysis. Study Sociol. Sci. 1, 687 (2004).

    Google Scholar 

  • 36.

    Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egyptian J. Remote Sens. Space Sci. 21(1), 87–94 (2018).

    Article 

    Google Scholar 

  • 37.

    Hamstead, Z. A., Kremer, P., Larondelle, N., McPhearson, T. & Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Ind. 70, 574–585 (2016).

    Article 

    Google Scholar 

  • 38.

    Wang, Q., Peng, Y., Fan, M., Zhang, Z. & Cui, Q. Landscape patterns affect precipitation differing across sub-climatic regions. Sustainability 10(12), 4859 (2018).

    Article 

    Google Scholar 

  • 39.

    Ross, R. S., Krishnamurti, T. N., Pattnaik, S. & Pai, D. S. Decadal surface temperature trends in India based on a new high-resolution data set. Sci. Rep. 8(1), 1–10 (2018).

    Google Scholar 

  • 40.

    Sharma, A., Sharma, D., Panda, S. K., Dubey, S. K. & Pradhan, R. K. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Glob. Planet. Change 161, 82–96 (2018).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9(11), e111207 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Manning, C. D., Schütze, H. & Raghavan, P. Introduction to Information Retrieval (Cambridge University Press, 2008).

    MATH 
    Book 

    Google Scholar 

  • 43.

    Gregory, S. Fuzzy overlapping communities in networks. J. Stat. Mech. Theory Exp. 2011(02), P02017 (2011).

    Article 

    Google Scholar 

  • 44.

    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275(1652), 2743–2748 (2008).

    Article 

    Google Scholar 

  • 45.

    Loh, J. et al. The Living Planet Index: Using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 360(1454), 289–295 (2005).

    Article 

    Google Scholar 

  • 46.

    Rockström, J. et al.. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14(2), 10–11, 24, (2009).

  • 47.

    Ganopolski, A. Climate change models. In Encyclopedia of Ecology 2nd edn (ed. Fath, B.) 48–57 (Elsevier, Berlin, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11166-2. ISBN 9780444641304.

  • 48.

    Nagendra, H., Reyers, B. & Lavorel, S. Impacts of land change on biodiversity: Making the link to ecosystem services. Curr. Opin. Environ. Sustain. 5(5), 503–508 (2013).

    Article 

    Google Scholar 

  • 49.

    Verburg, P. H., Kok, K., Pontius, R. G. & Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change Global Change—The IGBP Series (eds Lambin, E. F. & Geist, H.) (Springer, Berlin, 2006). https://doi.org/10.1007/3-540-32202-7_5.

    Chapter 

    Google Scholar 

  • 50.

    Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008).

    MATH 
    Article 

    Google Scholar 

  • 51.

    Ahn, Y. Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Soundarajan, S. & Gomes, C. Using community detection algorithms for sustainability applications. In Proceddings of the 3rd International Conference on Computational Sustainability (2012).

  • 53.

    Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Clauset, A. et al. Finding community structure in very large networks. Phys. Rev. E 70(6), 1–6 (2004).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Newman, M. E. Finding community structure in networks using the eigen vectors of matrices. Phys. Rev. E 74, 036104 (2006).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 56.

    Pons, P. & Latapy, M. Computing communities in large networks using random walks. Computer and Information Sciences—ISCIS 2005 (2005).

  • 57.

    Newman, M. E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 58.

    Chakraborty, S., Novo, L., Ambainis, A. & Omar, Y. Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116(10), 100501 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Chakraborty, S., Novo, L., Di Giorgio, S. & Omar, Y. Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Faccin, M., Migdał, P., Johnson, T. H., Bergholm, V. & Biamonte, J. D. Community detection in quantum complex networks. Phys. Rev. X 4(4), 041012 (2014).

    Google Scholar 

  • 61.

    Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Network community detection on small quantum computers. Adv. Quantum Technol. 2(9), 1900029 (2019).

    Article 

    Google Scholar 

  • 62.

    Gupta, S., Taneja, S. & Kumar, N. Quantum inspired genetic algorithm for community structure detection in social networks. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation 1119–1126 (2014).

  • 63.

    Gupta, S. & Kumar, N. Parameter tuning in quantum-inspired evolutionary algorithms for partitioning complex networks. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation 1045–1048 (2014).

  • 64.

    Li, Y., Wang, Y., Chen, J., Jiao, L. & Shang, R. Overlapping community detection through an improved multi-objective quantum-behaved particle swarm optimization. J. Heuristics 21(4), 549–575 (2015).

    Article 

    Google Scholar 

  • 65.

    Gupta, S. et al. Parallel quantum-inspired evolutionary algorithms for community detection in social networks. Appl. Soft Comput. 61, 331–353 (2017).

    Article 

    Google Scholar 

  • 66.

    Li, L., Jiao, L., Zhao, J., Shang, R. & Gong, M. Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering. Pattern Recogn. 63, 1–14 (2017).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Yuanyuan, M. & Xiyu, L. Quantum inspired evolutionary algorithm for community detection in complex networks. Phys. Lett. A 382(34), 2305–2312 (2018).

    ADS 
    MathSciNet 
    MATH 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Community Detection Across Emerging Quantum Architectures (2018).

  • 69.

    Negre, C., Ushijima-Mwesigwa, H. & Mniszewski, S. Detecting multiple communities using quantum annealing on the D-Wave system. PLoS ONE 15, e0227538. https://doi.org/10.1371/journal.pone.0227538 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Akbar, S. & Saritha, S. K. Towards quantum computing based community detection. Comput. Sci. Rev. 38, 100313. https://doi.org/10.1016/j.cosrev.2020.100313. (2020). (ISSN 1574-0137)

    MathSciNet 
    Article 

    Google Scholar 

  • 71.

    Akbar, S. & Saritha S. K. QML based community detection in the realm of social network analysis. In 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), July 1–3, 2020, IIT Kharagpur, India (2020).

  • 72.

    Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • 73.

    Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjectivegenetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 6, 182–197 (2002).

    Article 

    Google Scholar 

  • 74.

    India’s tiger population sees 33% increase, BBC. 29 July 2019. https://www.bbc.com/news/world-asia-india-49148174.

  • 75.

    Rathore, L. S., Attri, S. D. & Jaswal, A. K. State level climate change trends in India. Meteorological Monograph No. ESSO/IMD/Education Multimedia Research Centre/02 (2013).


  • Source: Ecology - nature.com

    Asegun Henry has a big idea for tackling climate change: Store up the sun

    New directions in real estate practice