Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications Vol. 8 (Cambridge University Press, 1994).
Google Scholar
Knoke, D. & Yang, S. Social Network Analysis Vol. 154 (Sage Publications, 2019).
Schaub, M. T., Delvenne, J. C., Rosvall, M. & Lambiotte, R. The many facets of community detection in complex networks. Appl. Netw. Sci. 2(1), 4 (2017).
Google Scholar
Papadopoulos, S., Kompatsiaris, Y., Vakali, A. & Spyridonos, P. Community detection in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012).
Google Scholar
Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005).
Google Scholar
Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94(1), 16–36 (2019).
Google Scholar
Creamer, R. E. et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil Ecol. 97, 112–124 (2016).
Google Scholar
Gogaladze, A. et al. Using social network analysis to assess the Pontocaspian biodiversity conservation capacity in Ukraine. Ecol. Soc. 25(2), 25 (2020).
Google Scholar
Braunisch, V. et al. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 36(9), 971–983 (2013).
Google Scholar
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353(6304), 8466 (2016).
Google Scholar
Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change 1(6), 313–318 (2011).
Google Scholar
Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
Google Scholar
Smith, R. et al. Ensuring Co-benefits for biodiversity, climate change and sustainable development. In Handbook of Climate Change and Biodiversity (eds Filho, W. L. et al.) 151–166 (Springer, 2019).
Google Scholar
Rands, M. R. et al. Biodiversity conservation: Challenges beyond 2010. Science 329(5997), 1298–1303 (2010).
Google Scholar
Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl. Acad. Sci. 117(29), 17074–17083 (2020).
Google Scholar
Greenwood, G. W. Finding solutions to NP problems: Philosophical differences between quantum and evolutionary search algorithms. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) Vol 2, 815–822 (IEEE, 2001).
Kaminsky, W. M. & Lloyd, S. Scalable architecture for adiabatic quantum computing of NP-hard problems. In Quantum Computing and Quantum Bits in Mesoscopic Systems (eds Leggett, A. J. et al.) 229–236 (Springer, 2004).
Google Scholar
Brandes, U. et al. (2006). Maximizing modularity is hard. arXiv preprint physics/0608255.
Fortunato, S. Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).
Google Scholar
Lev S. Bishop https://developer.ibm.com/code/videos/qiskit-quantum-computing-tech-talk/.
De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: A review. Glob. Environ. Change 19(2), 306–315 (2009).
Google Scholar
Bello, G. A. et al. Response-guided community detection: Application to climate index discovery. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases 736–751 (Springer, 2015).
Steinhaeuser, K., Chawla, N. V. & Ganguly, A. R. (2009). An exploration of climate data using complex networks. In Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data 23–31.
Ceron, W., Santos, L. B., Neto, G. D., Quiles, M. G. & Candido, O. A. Community detection in very high-resolution meteorological networks. IEEE Geosci. Remote Sens. Lett. 17(11), 2007–2010 (2019).
Google Scholar
Sekulić, S., Data, B. E. G., Long, J. & Demšar, U. Geographical context in community detection: A comparison of a node-based and a link-based approach.
Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).
Google Scholar
Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004).
Google Scholar
Strehl, A. & Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002).
Google Scholar
Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2(1), 193–218 (1985).
Google Scholar
Stumpf, M. P. & Wiuf, C. Sampling properties of random graphs: The degree distribution. Phys. Rev. E 72(3), 036118 (2005).
Google Scholar
Kumar, R., Novak, J. & Tomkins, A. Structure and evolution of online social networks. In Link Mining: Models, Algorithms, and Applications (eds Yu, P. et al.) 337–357 (Springer, 2010).
Google Scholar
Bródka, P., Skibicki, K., Kazienko, P. & Musiał, K. A degree centrality in multi-layered social network. In 2011 International Conference on Computational Aspects of Social Networks (CASoN) 237–242 (IEEE, 2011).
Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007).
Google Scholar
Chakraborty, T., Dalmia, A., Mukherjee, A. & Ganguly, N. Metrics for community analysis: A survey. ACM Comput. Surv. (CSUR) 50(4), 1–37 (2017).
Google Scholar
Freeman, L. The development of social network analysis. Study Sociol. Sci. 1, 687 (2004).
Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egyptian J. Remote Sens. Space Sci. 21(1), 87–94 (2018).
Google Scholar
Hamstead, Z. A., Kremer, P., Larondelle, N., McPhearson, T. & Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Ind. 70, 574–585 (2016).
Google Scholar
Wang, Q., Peng, Y., Fan, M., Zhang, Z. & Cui, Q. Landscape patterns affect precipitation differing across sub-climatic regions. Sustainability 10(12), 4859 (2018).
Google Scholar
Ross, R. S., Krishnamurti, T. N., Pattnaik, S. & Pai, D. S. Decadal surface temperature trends in India based on a new high-resolution data set. Sci. Rep. 8(1), 1–10 (2018).
Sharma, A., Sharma, D., Panda, S. K., Dubey, S. K. & Pradhan, R. K. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Glob. Planet. Change 161, 82–96 (2018).
Google Scholar
Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9(11), e111207 (2014).
Google Scholar
Manning, C. D., Schütze, H. & Raghavan, P. Introduction to Information Retrieval (Cambridge University Press, 2008).
Google Scholar
Gregory, S. Fuzzy overlapping communities in networks. J. Stat. Mech. Theory Exp. 2011(02), P02017 (2011).
Google Scholar
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275(1652), 2743–2748 (2008).
Google Scholar
Loh, J. et al. The Living Planet Index: Using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 360(1454), 289–295 (2005).
Google Scholar
Rockström, J. et al.. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14(2), 10–11, 24, (2009).
Ganopolski, A. Climate change models. In Encyclopedia of Ecology 2nd edn (ed. Fath, B.) 48–57 (Elsevier, Berlin, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11166-2. ISBN 9780444641304.
Nagendra, H., Reyers, B. & Lavorel, S. Impacts of land change on biodiversity: Making the link to ecosystem services. Curr. Opin. Environ. Sustain. 5(5), 503–508 (2013).
Google Scholar
Verburg, P. H., Kok, K., Pontius, R. G. & Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change Global Change—The IGBP Series (eds Lambin, E. F. & Geist, H.) (Springer, Berlin, 2006). https://doi.org/10.1007/3-540-32202-7_5.
Google Scholar
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008).
Google Scholar
Ahn, Y. Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010).
Google Scholar
Soundarajan, S. & Gomes, C. Using community detection algorithms for sustainability applications. In Proceddings of the 3rd International Conference on Computational Sustainability (2012).
Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007).
Google Scholar
Clauset, A. et al. Finding community structure in very large networks. Phys. Rev. E 70(6), 1–6 (2004).
Google Scholar
Newman, M. E. Finding community structure in networks using the eigen vectors of matrices. Phys. Rev. E 74, 036104 (2006).
Google Scholar
Pons, P. & Latapy, M. Computing communities in large networks using random walks. Computer and Information Sciences—ISCIS 2005 (2005).
Newman, M. E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004).
Google Scholar
Chakraborty, S., Novo, L., Ambainis, A. & Omar, Y. Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116(10), 100501 (2016).
Google Scholar
Chakraborty, S., Novo, L., Di Giorgio, S. & Omar, Y. Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017).
Google Scholar
Faccin, M., Migdał, P., Johnson, T. H., Bergholm, V. & Biamonte, J. D. Community detection in quantum complex networks. Phys. Rev. X 4(4), 041012 (2014).
Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Network community detection on small quantum computers. Adv. Quantum Technol. 2(9), 1900029 (2019).
Google Scholar
Gupta, S., Taneja, S. & Kumar, N. Quantum inspired genetic algorithm for community structure detection in social networks. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation 1119–1126 (2014).
Gupta, S. & Kumar, N. Parameter tuning in quantum-inspired evolutionary algorithms for partitioning complex networks. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation 1045–1048 (2014).
Li, Y., Wang, Y., Chen, J., Jiao, L. & Shang, R. Overlapping community detection through an improved multi-objective quantum-behaved particle swarm optimization. J. Heuristics 21(4), 549–575 (2015).
Google Scholar
Gupta, S. et al. Parallel quantum-inspired evolutionary algorithms for community detection in social networks. Appl. Soft Comput. 61, 331–353 (2017).
Google Scholar
Li, L., Jiao, L., Zhao, J., Shang, R. & Gong, M. Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering. Pattern Recogn. 63, 1–14 (2017).
Google Scholar
Yuanyuan, M. & Xiyu, L. Quantum inspired evolutionary algorithm for community detection in complex networks. Phys. Lett. A 382(34), 2305–2312 (2018).
Google Scholar
Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Community Detection Across Emerging Quantum Architectures (2018).
Negre, C., Ushijima-Mwesigwa, H. & Mniszewski, S. Detecting multiple communities using quantum annealing on the D-Wave system. PLoS ONE 15, e0227538. https://doi.org/10.1371/journal.pone.0227538 (2020).
Google Scholar
Akbar, S. & Saritha, S. K. Towards quantum computing based community detection. Comput. Sci. Rev. 38, 100313. https://doi.org/10.1016/j.cosrev.2020.100313. (2020). (ISSN 1574-0137)
Google Scholar
Akbar, S. & Saritha S. K. QML based community detection in the realm of social network analysis. In 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), July 1–3, 2020, IIT Kharagpur, India (2020).
Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002).
Google Scholar
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjectivegenetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 6, 182–197 (2002).
Google Scholar
India’s tiger population sees 33% increase, BBC. 29 July 2019. https://www.bbc.com/news/world-asia-india-49148174.
Rathore, L. S., Attri, S. D. & Jaswal, A. K. State level climate change trends in India. Meteorological Monograph No. ESSO/IMD/Education Multimedia Research Centre/02 (2013).
Source: Ecology - nature.com