in

The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts

  • 1.

    Jürgens, N., Oncken, I., Oldeland, J., Gunter, F. & Rudolph, B. Welwitschia: phylogeography of a living fossil, diversified within a desert refuge. Sci. Rep. 11, 2385 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Herre, H. The age of Welwitschia bainesii (Hook. f) Cearr.: C14 research. S. Afr. J. Bot. 27, 139–140 (1961).

    Google Scholar 

  • 3.

    Bornman, C. H. Welwitschia mirabilis: structural and functional anomalies. Madoqua 10, 21–31 (1977).

    Google Scholar 

  • 4.

    Talalaj, S., Talalaj, D. & Talalaj, J. The strangest plants in the world. (Hill of Content, 1991).

  • 5.

    Hooker, J. I. On Welwitschia, a new genus of Gnetaceæ. Trans. Linn. Soc. Lond. 24, 1–48 (1862).

    Article 

    Google Scholar 

  • 6.

    Friedman, W. E. Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae). Am. J. Bot. 102, 312–324 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Dilcher, D. L., Bernardes-De-Oliveira, M. E. & Pons, D. Welwitschiaceae from the lower Cretaceous of northeastern Brazil. Am. J. Bot. 92, 1294–1310 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Li, Z. et al. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol. Evol. 9, 1130–1147 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Doyle, J. A. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci. 40, 301–326 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Bateman, R. Hunting the Snark: the flawed search for mythical Jurassic angiosperms. J. Exp. Bot. 71, 22–35 (2019).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. Nat. Plants 4, 82–89 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Leitch, I. J., Hanson, L., Winfield, M., Parker, J. & Bennett, M. D. Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88, 843–849 (2001).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Khoshoo, T. N. & Ahuja, M. R. The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14, 522–533 (1963).

    Article 

    Google Scholar 

  • 16.

    Li, Z. et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 1, e1501084 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Van de Peer, Y. Computational approaches to unveiling ancient genome duplications. Nat. Rev. Genet 5, 752–763 (2004).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Zhang, Q.-J. et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons to drive genome size evolution. Mol. Plant 13, 935–938 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Zhang, Q. J. & Gao, L. Z. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 (Bethesda, Md.) 7, 1875–1885 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Cossu, R. M. et al. LTR retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. Genome Biol. Evol. 9, 3449–3462 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Roddy, A. et al. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. Int. J. Plant. Sci. https://doi.org/10.1101/619585 (2019).

  • 22.

    Ausin, I. et al. DNA methylome of the 20-gigabase Norway spruce genome. Proc. Natl Acad. Sci. USA 113, E8106–e8113 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Matzke, M. A., Kanno, T. & Matzke, A. J. M. RNA-Directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66, 243–267 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Johnsen, Ø. et al. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 28, 1090–1102 (2005).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Yakovlev, I. A., Carneros, E., Lee, Y., Olsen, J. E. & Fossdal, C. G. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237–1249 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Trávníček, P. et al. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. N. Phytol. 224, 1642–1656 (2019).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Cacciò, S. et al. Methylation patterns in the isochores of vertebrate genomes. Gene 205, 119–124 (1997).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Serres-Giardi, L., Belkhir, K., David, J. & Glémin, S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24, 1379–1397 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Glémin, S. Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression. Genetics 185, 939–959 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Vinogradov, A. E. DNA helix: the importance of being GC-rich. Nucleic Acids Res. 31, 1838–1844 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Rocha, E. P. & Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Shenhav, L. & Zeevi, D. Resource conservation manifests in the genetic code. Science 370, 683–687 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Kelly, S. The amount of nitrogen used for photosynthesis modulates molecular evolution in plants. Mol. Biol. Evol. 35, 1616–1625 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Martens, P. Welwitschia mirabilis and neoteny. Am. J. Bot. 64, 916–920 (1977).

    Article 

    Google Scholar 

  • 39.

    Robert, J. R. Leaf anatomy of Welwitschia. i. Early development of the leaf. Am. J. Bot. 45, 90–95 (1958).

    Article 

    Google Scholar 

  • 40.

    Bornman, C. H. Welwitschia mirabilis: paradox of the Namib Desert. Endeavour 31, 95–99 (1972).

    Google Scholar 

  • 41.

    Pham, T. & Sinha, N. Role of KNOX genes in shoot development of Welwitschia mirabilis. Int. J. Plant Sci. 164, 333–343 (2003).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Nishii, K. et al. A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev. Genes Evol. 220, 25–40 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Hacham, Y. et al. Brassinosteroid perception in the epidermis controls root meristem size. Dev. (Camb., Engl.) 138, 839–848 (2011).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Sun, S. et al. Brassinosteroid signalling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev. Cell 34, 220–228 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Wei, Z. & Li, J. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 9, 86–100 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Jiang, C. K. & Rao, G. Y. Insights into the diversification and evolution of R2R3-MYB transcription factors in plants. Plant Physiol. 183, 637–655 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Pandey, A., Misra, P. & Trivedi, P. K. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep. 34, 1515–1528 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Petroni, K. et al. The AtMYB11 gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta and organogenesis in vitro. J. Exp. Bot. 59, 1201–1213 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Gugger, P. F., Peñaloza-Ramírez, J. M., Wright, J. W. & Sork, V. L. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata. Tree Physiol. 37, 632–644 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Jaiwal, S. K. C. A., Mahajan, S., Kumar, S. & Sharma, V. K. The genome sequence of Aloe vera reveals adaptive evolution of drought tolerance mechanisms. iScience 24, 102078 (2021).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Henschel, J. R. & Seely, M. K. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib desert (including a bibliography). Plant Ecol. 150, 7–26 (2000).

    Article 

    Google Scholar 

  • 54.

    Stortenbeker, N. & Bemer, M. The SAUR gene family: the plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 70, 17–27 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Wei, J. et al. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. J. Exp. Bot. 66, 5809–5820 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Olinares, P. D., Kim, J., Davis, J. I. & van Wijk, K. J. Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis. Plant Cell 23, 2348–2361 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Sjögren, L. L., Stanne, T. M., Zheng, B., Sutinen, S. & Clarke, A. K. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 2635–2649 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Dong, H. et al. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol. 162, 1867–1880 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Nakabayashi, K., Ito, M., Kiyosue, T., Shinozaki, K. & Watanabe, A. Identification of clp genes expressed in senescing Arabidopsis leaves. Plant cell Physiol. 40, 504–514 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Koussevitzky, S. et al. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol. Biol. 63, 85–96 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Vierling, E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620 (1991).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Guo, L. M., Li, J., He, J., Liu, H. & Zhang, H. M. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci. Rep. 10, 1383 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Waseem, M., Rong, X. & Li, Z. Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front. Plant Sci. 10, 734 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    De La Torre, A. R., Lin, Y. C., Van de Peer, Y. & Ingvarsson, P. K. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families. Genome Biol. Evol. 7, 1002–1015 (2015).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Neale, D. B., Martínez-García, P. J., De La Torre, A. R., Montanari, S. & Wei, X. X. Novel insights into tree biology and genome evolution as revealed through genomics. Annu. Rev. Plant Biol. 68, 457–483 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Jiang, F. et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic. Res. 6, 128 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Huo, H., Dahal, P., Kunusoth, K., McCallum, C. M. & Bradford, K. J. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance. Plant Cell 25, 884–900 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Wang, H. et al. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc. Natl Acad. Sci. USA 112, 13729–13734 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Xu, J. et al. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnol. J. 16, 672–687 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Welwitschioid diversity in the early Cretaceous: evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53, 175–196 (2014).

    Article 

    Google Scholar 

  • 72.

    Damme, P. V. & Vernemmen, P. The natural environment of the Namib Desert. Afr. Focus 7, 355–400 (1992).

    Google Scholar 

  • 73.

    Siesser, W. G. Late Miocene origin of the Benguela upswelling system off northern Namibia. Science 4441, 283–285 (1980).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Meyers, P. A., Brassell, S. C., Huc, A. Y., Barron, E. J. & Stradner, H. Organic geochemistry of sediments recovered by DSDP/IPOD Leg 75 from under the Benguela current. Volume 10, pp.14. (Plenum Press, 1983).

  • 75.

    Alzohairy, A. M., Yousef, M. A., Edris, S., Kerti, B. & Alzohairy, M. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT-qPCR. Life Sci. J. 9, 5019–5026 (2012).

    Google Scholar 

  • 76.

    Morano, A. et al. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42, 804–821 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Russo, G. et al. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci. Rep. 6, 33222 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Doerfler, W. The almost-forgotten fifth nucleotide in DNA: an introduction. Curr. Top. Microbiol. Immunol. 301, 3–18 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Guignard, M. et al. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 5, 70 (2017).

    Article 

    Google Scholar 

  • 81.

    Drake, P. L., Froend, R. H. & Franks, P. J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495–505 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Massmann, U. Welwitschia: nach 90 jahren. Namib. und Meer 7, 45–46 (1976).

    Google Scholar 

  • 83.

    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, 265–268 (2007).

    Article 

    Google Scholar 

  • 87.

    Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, 152–158 (2005).

    Article 

    Google Scholar 

  • 88.

    Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, 351–358 (2005).

    Article 

    Google Scholar 

  • 89.

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 91.

    Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, 89 (2016).

    Article 
    CAS 

    Google Scholar 

  • 94.

    Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, 7 (2008).

    Article 
    CAS 

    Google Scholar 

  • 97.

    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, 351–360 (2019).

    Article 
    CAS 

    Google Scholar 

  • 98.

    Vanneste, K., Van de Peer, Y. & Maere, S. Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30, 177–190 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evolution. 24, 1586–1591 (2007).

    CAS 
    Article 

    Google Scholar 

  • 103.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Proost, S. et al. i-ADHoRe 3.0–fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, 11 (2012).

    Article 
    CAS 

    Google Scholar 

  • 105.

    Fostier, J. et al. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinformatics 27, 749–756 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 106.

    Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 107.

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 108.

    Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 109.

    Moreno-Hagelsieb, G. & Latimer, K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24, 319–324 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 110.

    Vanneste, K., Baele, G., Maere, S. & Van de Peer, Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24, 1334–1347 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Ostlund, G. et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–D203 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 112.

    D’Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 113.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Group, A. P. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article 

    Google Scholar 

  • 115.

    Gandolfo, M., Nixon, K. & Crepet, W. A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Ceapparales). Am. J. Bot. 85, 964 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R. & Mathews, S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 18724–18728 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 117.

    Crepet, W. & Nixon, K. Fossil Clusiaceae from the late Cretaceous (Turonian) of new Jersey and implications regarding the history of bee pollination. Am. J. Bot. 85, 1122 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 118.

    Xi, Z. et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Natl Acad. Sci. USA 109, 17519–17524 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 119.

    Friis, E. M. Spirematospermum chandlerae sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tert. Res. 9, 7–12 (1988).

    Google Scholar 

  • 120.

    Janssen, T. & Bremer, K. The age of major monocot groups inferred from 800+rbcL sequences. Bot. J. Linn. Soc. 146, 385–398 (2004).

    Article 

    Google Scholar 

  • 121.

    Doyle, J. A. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44, 227–251 (2005).

    Article 

    Google Scholar 

  • 122.

    Rydin, C., Pedersen, K. R. & Friis, E. M. On the evolutionary history of Ephedra: cretaceous fossils and extant molecules. Proc. Natl Acad. Sci. USA 101, 16571–16576 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 123.

    Magallón, S. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst. Biol. 59, 384–399 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 124.

    Clarke, J. T., Warnock, R. C. & Donoghue, P. C. Establishing a time-scale for plant evolution. N. phytologist 192, 266–301 (2011).

    Article 

    Google Scholar 

  • 125.

    Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 126.

    Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 127.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    Article 

    Google Scholar 

  • 128.

    Yu, X. J., Zheng, H. K., Wang, J., Wang, W. & Su, B. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics 88, 745–751 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 129.

    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 130.

    Vilella, A. J. et al. EnsemblCompara geneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 131.

    Seberg, O. & Petersen, G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat. Rev. Genet. 10, 276 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 132.

    Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 134.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 135.

    Jühling, F. et al. Metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 136.

    Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 137.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 138.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 139.

    Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 140.

    Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. CutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 141.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 25 (2009).

    Article 
    CAS 

    Google Scholar 

  • 142.

    Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 143.

    Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–d162 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 144.

    Li, Z. & He, Y. Roles of brassinosteroids in plant reproduction. Int. J. Mol. Sci. 21, 872 (2020).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 145.

    Xin, P., Yan, J., Fan, J., Chu, J. & Yan, C. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol. 162, 2056–2066 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 146.

    Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 147.

    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 148.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 149.

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 150.

    Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Asegun Henry has a big idea for tackling climate change: Store up the sun

    New directions in real estate practice