Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci Adv. 2017;3:e1602422.
Google Scholar
Johnson PTJ, Preston DL, Hoverman JT, LaFonte BE. Host and parasite diversity jointly control disease risk in complex communities. Proc Natl Acad Sci USA. 2013;110:16916–21.
Google Scholar
Dougherty ER, Carlson CJ, Bueno VM, Burgio KR, Cizauskas CA, Clements CF, et al. Paradigms for parasite conservation: parasite conservation. Conserv Biol. 2016;30:724–33.
Google Scholar
Paseka RE, White LA, Van de Waal DB, Strauss AT, González AL, Everett RA, et al. Disease-mediated ecosystem services: pathogens, plants, and people. Trends Ecol Evolut. 2020;35:731–43.
Google Scholar
Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073.
Google Scholar
Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. The planktonic protist interactome: where do we stand after a century of research? ISME J. 2020;14:544–59.
Google Scholar
Brussaard CPD. Viral control of phytoplankton populations-a review. J Eukaryot Microbiol. 2004;51:125–38.
Google Scholar
Chambouvet A, Morin P, Marie D, Guillou L. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science. 2008;322:1254–7.
Google Scholar
Vardi A, Van Mooy BA, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty L, et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science. 2009;326:861–5.
Google Scholar
Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.
Google Scholar
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.
Google Scholar
Siano R, Alves-de-Souza C, Foulon E, Bendif EM, Simon N, Guillou L, et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.
Google Scholar
Park M, Cooney S, Yih W, Coats D. Effects of two strains of the parasitic dinoflagellate Amoebophrya on growth, photosynthesis, light absorption, and quantum yield of bloom-forming dinoflagellates. Mar Ecol Prog Ser. 2002;227:281–92.
Google Scholar
Velo-Suárez L, Brosnahan ML, Anderson DM, McGillicuddy DJ. A Quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment. PLoS ONE. 2013;8:e81150.
Google Scholar
Li C, Song S, Liu Y, Chen T. Occurrence of Amoebophrya spp. infection in planktonic dinoflagellates in Changjiang (Yangtze River) Estuary, China. Harmful Algae. 2014;37:117–24.
Google Scholar
Choi CJ, Brosnahan ML, Sehein TR, Anderson DM, Erdner DL. Insights into the loss factors of phytoplankton blooms: the role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol Oceanogr. 2017;62:1742–53.
Google Scholar
Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta); parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.
Google Scholar
Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:2531.
Google Scholar
Anderson SR, Harvey EL. Temporal variability and ecological interactions of parasitic marine Syndiniales in coastal protist communities. mSphere. 2020;5:e00209–20.
Google Scholar
Alves-de-Souza C, Pecqueur D, Le Floc’h E, Mas S, Roques C, Mostajir B, et al. Significance of plankton community structure and nutrient availability for the control of dinoflagellate blooms by parasites: a modeling approach. PLoS ONE. 2015;10:e0127623.
Google Scholar
Alacid E, Park MG, Turon M, Petrou K, Garcés E. A game of russian roulette for a generalist dinoflagellate parasitoid: host susceptibility is the key to success. Front Microbiol. 2016;7:769.
Google Scholar
Vincent F, Sheyn U, Porat Z, Schatz D, Vardi A. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc Natl Acad Sci USA. 2021;118:e2021586118.
Google Scholar
Chambouvet A, Alves-de-Souza C, Cueff V, Marie D, Karpov S, Guillou L. Interplay between the parasite Amoebophrya sp. (Alveolata) and the cyst formation of the red tide dinoflagellate Scrippsiella trochoidea. Protist. 2011;162:637–49.
Google Scholar
Pelusi A, De Luca P, Manfellotto F, Thamatrakoln K, Bidle KD, Montresor M. Virus‐induced spore formation as a defense mechanism in marine diatoms. New Phytol. 2020;229:16951–2259.
Pouneva ID. Effect of abscisic acid and ontogenic phases of the host alga on the infection process in the pathosystem Scenedesmus acutus—Phlyctidium scenenedesmi. Acta Physiol Plant. 2006;28:395–400.
Google Scholar
Bai X, Adolf JE, Bachvaroff T, Place AR, Coats DW. The interplay between host toxins and parasitism by Amoebophrya. Harmful Algae. 2007;6:670–8.
Google Scholar
Place AR, Bai X, Kim S, Sengco MR, Wayne, Coats D. Dinoflagellate host-parasite sterol profiles dictate karlotoxin sensitivity. J Phycol. 2009;45:375–85.
Google Scholar
Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in Cyanobacteria of the Genus Planktothrix. Appl Environ Microbiol. 2013;79:2642–7.
Google Scholar
Scholz B, Küpper F, Vyverman W, Ólafsson H, Karsten U. Chytridiomycosis of marine diatoms—the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Marine Drugs. 2017;15:26.
Google Scholar
Granéli E, Hansen PJ. Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner JT, editors. Ecology of harmful algae. Springer Berlin Heidelberg; 2006. p. 189–201.
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1.
Google Scholar
Chapelle A, Le Bec C, Amzil Z, Dreanno C, Klouch KZ, Labry C, et al. Etude sur la proliferation de la micro algue Alexandrium minutum en rade de Brest (2014).
Chapelle A, Le Gac M, Labry C, Siano R, Quere J, Caradec F, et al. The Bay of Brest (France), a new risky site for toxic Alexandrium minutum blooms and PSP shellfish contamination. Harmful Algal News. 2015;51:4–5.
Klouch KZ, Schmidt S, Andrieux-Loyer F, Le Gac M, Hervio-Heath D, Qui-Minet ZN. et al. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). FEMS Microbiol Ecol. 2016;92:fiw101
Google Scholar
Long M, Tallec K, Soudant P, Le Grand F, Donval A, Lambert C, et al. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 2018;35:508–18.
Google Scholar
Long M, Peltekis A, González-Fernández C, Bailleul B, Hégaret H. Allelochemicals of Alexandrium minutum: kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom. Harmful Algae. 2021;103:101997.
Google Scholar
Starr RC, Zeikus JA. Utex—The culture collection of algae at the university of Texas at Austin 1993 List of cultures. J Phycol. 1993;29:1–106.
Google Scholar
Keller M, Selvin R, Claus W, Guillard RRL. Media for the culture of oceanic ultraphytoplankton 1, 2. J Phycol. 1987;23:633–8.
Bigeard. Collect of Amoebophrya parasite (free-living stage) for genomic and transcriptomic analyses. 2019. Protocols.io.
Kim S, Gil Park M, Yih W, Coats DW. Infection of the bloom-forming thecate dinoflagellates Alexandrium affina and Gonyaulax spinifera by two strains of Amoebophrya (Dinophyta). J Phycol. 2004;40:815–22.
Google Scholar
Kim S. Patterns in host range for two strains of Amoebophrya (Dinophyta) infecting thecate dinoflagellates: Amoebophrya spp. ex Alexandrium affine and ex Gonyaulax polygramma. J Phycol. 2006;42:1170–3.
Google Scholar
Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate host chloroplasts and mitochondria remain functional during Amoebophrya Infection. Front Microbiol. 2020;11:600823.
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
John U, Tillmann U, Hülskötter J, Alpermann TJ, Wohlrab S, Van de Waal DB. Intraspecific facilitation by allelochemical mediated grazing protection within a toxigenic dinoflagellate population. Proc R Soc B. 2015;282:20141268.
Google Scholar
Lelong A, Haberkorn H, Le Goïc N, Hégaret H, Soudant P. A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microb Ecol. 2011;62:919–30.
Google Scholar
Tillmann U, Alpermann T, John U, Cembella A. Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae. 2008;7:52–64.
Google Scholar
Durham WM, Stocker R. Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu Rev Mar Sci. 2012;4:177–207.
Google Scholar
Breier RE, Lalescu CC, Waas D, Wilczek M, Mazza MG. Emergence of phytoplankton patchiness at small scales in mild turbulence. Proc Natl Acad Sci USA. 2018;115:12112–7.
Google Scholar
Wheeler JD, Secchi E, Rusconi R, Stocker R. Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu Rev Cell Dev Biol. 2019;35:213–37.
Google Scholar
Basterretxea G, Font-Muñoz JS, Tuval I. Phytoplankton orientation in a turbulent ocean: a microscale perspective. Front Mar Sci. 2020;7:185.
Google Scholar
Blossom HE, Markussen B, Daugbjerg N, Krock B, Norlin A, Hansen PJ. The cost of toxicity in microalgae: direct evidence from the dinoflagellate Alexandrium. Front Microbiol. 2019;10:1065.
Google Scholar
Martens H, Van de Waal DB, Brandenburg KM, Krock B, Tillmann U. Salinity effects on growth and toxin production in an Alexandrium ostenfeldii (Dinophyceae) isolate from The Netherlands. J Plankton Res. 2016;38:1302–16.
Google Scholar
Long M, Holland A, Planquette H, González Santana D, Whitby H, Soudant P, et al. Effects of copper on the dinoflagellate Alexandrium minutum and its allelochemical potency. Aquat Toxicol. 2019;210:251–61.
Google Scholar
Brown ER, Kubanek J. Harmful alga trades off growth and toxicity in response to cues from dead phytoplankton. Limnol Oceanogr. 2020;65:1723–33.
Google Scholar
Selander E, Thor P, Toth G, Pavia H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc B. 2006;273:1673–80.
Google Scholar
Lu Y, Wohlrab S, Groth M, Glöckner G, Guillou L, John U. Transcriptomic profiling of Alexandrium fundyense during physical interaction with or exposure to chemical signals from the parasite Amoebophrya. Mol Ecol. 2016;25:1294–307.
Google Scholar
Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:17065.
Google Scholar
Place A, Harvey H, Bai X, Coats D. Sneaking under the toxin surveillance radar: parasitism and sterol content. Afr J Mar Sci. 2006;28:347–51.
Google Scholar
Ma H, Krock B, Tillmann U, Bickmeyer U, Graeve M, Cembella A. Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon. 2011;58:247–58.
Google Scholar
Deeds J, Place A. Sterol-specific membrane interactions with the toxins from Karlodinium micrum (Dinophyceae) — a strategy for self-protection? Afr J Mar Sci. 2006;28:421–5.
Google Scholar
Leblond JD, Sengco MR, Sickman JO, Dahmen JL, Anderson DM. Sterols of the Syndinian dinoflagellate Amoebophrya sp., a parasite of the dinoflagellate Alexandrium tamarense (Dinophyceae). J Eukaryotic Microbiol. 2006;53:211–6.
Google Scholar
Long M, Tallec K, Soudant P, Lambert C, Le Grand F, Sarthou G, et al. A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum. Environ Pollut. 2018;242:1598–605.
Google Scholar
Borcier E, Morvezen R, Boudry P, Miner P, Charrier G, Laroche J, et al. Effects of bioactive extracellular compounds and paralytic shellfish toxins produced by Alexandrium minutum on growth and behaviour of juvenile great scallops Pecten maximus. Aquatic Toxicol. 2017;184:142–54.
Google Scholar
Castrec J, Soudant P, Payton L, Tran D, Miner P, Lambert C, et al. Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters. Aquat Toxicol. 2018;199:188–98.
Google Scholar
Wang Y, Tang X. Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture. Harmful Algae. 2008;7:65–75.
Google Scholar
Tang YZ, Gobler CJ. Lethal effects of Northwest Atlantic Ocean isolates of the dinoflagellate, Scrippsiella trochoidea, on Eastern oyster (Crassostrea virginica) and Northern quahog (Mercenaria mercenaria) larvae. Mar Biol. 2012;159:199–210.
Google Scholar
Felpeto AB, Roy S, Vasconcelos VM. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos. 2018;127:85–98.
Google Scholar
Driscoll WW, Hackett JD, Ferrière R. Eco-evolutionary feedbacks between private and public goods: evidence from toxic algal blooms. Ecol Lett. 2016;19:81–97.
Google Scholar
Driscoll WW, Espinosa NJ, Eldakar OT, Hackett JD. Allelopathy as an emergent, exploitable public good in the bloom-forming microalga Prymnesium parvum. Evolution. 2013;67:1582–90.
Google Scholar
Rodríguez F, Figueroa RI. Confirmation of the wide host range of Parvilucifera corolla (Alveolata, Perkinsozoa). Eur J Protistol. 2020;74:125690.
Google Scholar
Chambouvet A, Laabir M, Sengco M, Vaquer A, Guillou L. Genetic diversity of Amoebophryidae (Syndiniales) during Alexandrium catenella/tamarense (Dinophyceae) blooms in the Thau lagoon (Mediterranean Sea, France). Res Microbiol. 2011;162:959–68.
Google Scholar
Cosgrove S. Monitoring methods and bloom dynamic studies of the toxic dinoflagellate genus Alexandrium. 2014. Doctoral dissertation, National University of Ireland, Galway.
Hutchinson GE. The Paradox of the plankton. Am Nat. 1961;95:137–45.
Google Scholar
Czaran TL, Hoekstra RF, Pagie L. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA. 2002;99:786–90.
Google Scholar
Garcés E, Alacid E, Reñé A, Petrou K, Simó R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 2013;7:1065–8.
Google Scholar
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D. et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:annurev-micro-022620-014327
Google Scholar
Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278.
Source: Ecology - nature.com