Or D, Smets BF, Wraith J, Dechesne A, Friedman S. Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Adv Water Resour. 2007;30:1505–27.
Google Scholar
Burkhardt J, Hunsche M. “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness. Front plant Sci. 2013;4:422.
Google Scholar
Wolf AB, Vos M, de Boer W, Kowalchuk GA. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PloS One. 2013;8:e83661.
Google Scholar
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–11.
Google Scholar
Williams S, Vickers J. The ecology of antibiotic production. Microb Ecol. 1986;12:43–52.
Google Scholar
Raaijmakers JM, Weller DM, Thomashow LS. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol. 1997;63:881–7.
Google Scholar
Wells JS, Hunter JC, Astle GL, Sherwood JC, Ricca cM, Trejo WH, et al. Distribution of β-lactam and β-lactone producing bacteria in nature. The. J Antibiot. 1982;35:814–21.
Google Scholar
Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56.
Google Scholar
Vetsigian K, Jajoo R, Kishony R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol. 2011;9:e1001184.
Google Scholar
Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.
Google Scholar
Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, et al. Antibiotics in agroecosystems: introduction to the special section. J Environ Qual. 2016;45:377–93.
Google Scholar
Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45.
Google Scholar
Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int. 2009;35:803–14.
Google Scholar
Kelsic ED, Zhao J, Vetsigian K, Kishony R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature. 2015;521:516–9.
Google Scholar
Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science. 2012;337:1228–31.
Google Scholar
Schlatter DC, Song Z, Vaz-Jauri P, Kinkel LL. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. Plos One. 2019;14:e0223779.
Google Scholar
Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, Van Wezel GP, et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci. 2015;112:11054–9.
Google Scholar
Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320.
Google Scholar
Andersson DI, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999;2:489–93.
Google Scholar
Handwerger S, Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Annu Rev Pharmacol Toxicol. 1985;25:349–80.
Google Scholar
Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol. 2014;49:91–101.
Google Scholar
Wood KB, Cluzel P. Trade-offs between drug toxicity and benefit in the multi-antibiotic resistance system underlie optimal growth of E. coli. BMC Syst Biol. 2012;6:1–11.
Google Scholar
Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982–6.
Google Scholar
Meredith HR, Srimani JK, Lee AJ, Lopatkin AJ, You L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol. 2015;11:182.
Google Scholar
Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgens CE, Hoehn MM, et al. beta.-Lactam antibiotics from Streptomyces. J Am Chem Soc. 1971;93:2308–10.
Google Scholar
Imada A, Kitano K, Kintaka K, Muroi M, Asai M. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature. 1981;289:590–1.
Google Scholar
Sykes R, Cimarusti C, Bonner D, Bush K, Floyd D, Georgopapadakou N, et al. Monocyclic β-lactam antibiotics produced by bacteria. Nature. 1981;291:489.
Google Scholar
Wells JS, TREJO WH, PRINCIPE PA, Bush K, Georgopapadakou N, Bonner DP, et al. EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. J Antibiot. 1982;35:295–9.
Google Scholar
ThaKurIa B, Lahon K. The beta lactam antibiotics as an empirical therapy in a developing country: An update on their current status and recommendations to counter the resistance against them. J Clin Diagn Res. 2013;7:1207.
Google Scholar
Russ D, Glaser F, Tamar ES, Yelin I, Baym M, Kelsic ED, et al. Escape mutations circumvent a tradeoff between resistance to a beta-lactam and resistance to a beta-lactamase inhibitor. Nat Commun. 2020;11:1–9.
Google Scholar
Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife. 2019;8:e48508.
Google Scholar
Orevi T, Kashtan N. Life in a droplet: microbial ecology in microscopic surface wetness. Front Microbiol. 2021;12:797.
Google Scholar
Mauer LJ, Taylor LS. Water-solids interactions: deliquescence. Annu Rev food Sci Technol. 2010;1:41–63.
Google Scholar
Wise ME, Martin ST, Russell LM, Buseck PR. Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci Technol. 2008;42:281–94.
Google Scholar
Burkhardt J, Koch K, Kaiser H. Deliquescence of deposited atmospheric particles on leaf surfaces. J Water, Air Soil Pollut: Focus. 2001;1:313–21.
Google Scholar
Beattie GA. Water relations in the Interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol. 2011;49:533–55.
Google Scholar
Davila AF, Hawes I, Ascaso C, Wierzchos J. Salt deliquescence drives photosynthesis in the hyperarid A tacama D esert. Environ Microbiol Rep. 2013;5:583–7.
Google Scholar
Dai S, Shin H, Santamarina JC. Formation and development of salt crusts on soil surfaces. Acta Geotechnica. 2016;11:1103–9.
Google Scholar
Trechsel HR. Moisture control in buildings. ASTM International; West Conshohocken, PA19428-2959, USA; 1994.
Schwartz-Narbonne H, Donaldson DJ. Water uptake by indoor surface films. Sci Rep. 2019;9:1–10.
Google Scholar
Patrick D, Findon G, Miller T. Residual moisture determines the level of touch-contact-associated bacterial transfer following hand washing. Epidemiol Infect. 1997;119:319–25.
Google Scholar
Tang IN, Munkelwitz HR. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos Environ Part A Gen Top. 1993;27:467–73.
Google Scholar
Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed. 2005;44:7520–40.
Google Scholar
Tecon R. Bacterial survival: life on a leaf. eLife. 2019;8:e52123.
Google Scholar
Vejerano EP, Marr LC. Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018;15:20170939.
Google Scholar
Rubasinghege G, Grassian VH. Role (s) of adsorbed water in the surface chemistry of environmental interfaces. Chem Commun. 2013;49:3071–94.
Google Scholar
Campbell TD, Febrian R, McCarthy JT, Kleinschmidt HE, Forsythe JG, Bracher PJ. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat Commun. 2019;10:1–7.
Google Scholar
Alsved M, Holm S, Christiansen S, Smidt M, Rosati B, Ling M, et al. Effect of aerosolization and drying on the viability of pseudomonas syringae cells. Front Microbiol. 2018;9:3086.
Google Scholar
Xie X, Li Y, Zhang T, Fang HH. Bacterial survival in evaporating deposited droplets on a teflon-coated surface. Appl Microbiol Biotechnol. 2006;73:703–12.
Google Scholar
Runkel S, Wells HC, Rowley G. Living with stress: a lesson from the enteric pathogen Salmonella enterica. Adv Appl Microbiol. 2013;83:87–144.
Amaeze N, Akinbobola A, Chukwuemeka V, Abalkhaila A, Ramage G, Kean R, et al. Development of a high throughput and low cost model for the study of semi-dry biofilms. Biofouling. 2020:36:403–15.
Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. The rate of killing of Escherichia coli byβ-lactam antibiotics is strictly proportional to the rate of bacterial growth. Microbiology. 1986;132:1297–304.
Google Scholar
Eng R, Padberg F, Smith S, Tan E, Cherubin C. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrobial Agents Chemother. 1991;35:1824–8.
Google Scholar
Lee S, Foley E, Epstein JA. Mode of action of penicillin: I. Bacterial growth and penicillin activity—Staphylococcus aureus FDA. J Bacteriol. 1944;48:393.
Google Scholar
Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L, et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat Microbiol. 2019;4:2109–17.
Yoon H, Park B-Y, Oh M-H, Choi K-H, Yoon Y. Effect of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. BioMed Res Int. 2013;2013:274096.
Zhu M, Dai X. High salt cross-protects Escherichia coli from antibiotic treatment through increasing efflux pump expression. mSphere 3: e00095-18. mSphere. 2018;3:e00095–18.
Google Scholar
Lee AJ, Wang S, Meredith HR, Zhuang B, Dai Z, You L. Robust, linear correlations between growth rates and β-lactam–mediated lysis rates. Proc Natl Acad Sci. 2018;115:4069–74.
Google Scholar
Loftin KA, Adams CD, Meyer MT, Surampalli R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J Environ Qual. 2008;37:378–86.
Google Scholar
Thonus IP, Fontijne P, Michel MF. Ampicillin susceptibility and ampicillin-induced killing rate of Escherichia coli. Antimicrobial Agents Chemother. 1982;22:386–90.
Google Scholar
Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159:1300–11.
Google Scholar
Yao Z, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell. 2012;48:705–12.
Google Scholar
Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol. 2011;65:189–213.
Google Scholar
Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9:e1003144.
Google Scholar
Pu Y, Zhao Z, Li Y, Zou J, Ma Q, Zhao Y, et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell. 2016;62:284–94.
Google Scholar
Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D. Superoxide dismutase activity confers (p) ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci. 2018;115:9797–802.
Google Scholar
Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14.
Google Scholar
Liao X, Ma Y, Daliri EB-M, Koseki S, Wei S, Liu D, et al. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci Technol. 2020;95:97–106.
Google Scholar
Levin-Reisman I, Brauner A, Ronin I, Balaban NQ. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci. 2019;116:14734–9.
Google Scholar
Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.
Google Scholar
Source: Ecology - nature.com