in

Wet-dry cycles protect surface-colonizing bacteria from major antibiotic classes

  • 1.

    Or D, Smets BF, Wraith J, Dechesne A, Friedman S. Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Adv Water Resour. 2007;30:1505–27.

    Article 

    Google Scholar 

  • 2.

    Burkhardt J, Hunsche M. “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness. Front plant Sci. 2013;4:422.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Wolf AB, Vos M, de Boer W, Kowalchuk GA. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PloS One. 2013;8:e83661.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Williams S, Vickers J. The ecology of antibiotic production. Microb Ecol. 1986;12:43–52.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Raaijmakers JM, Weller DM, Thomashow LS. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol. 1997;63:881–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Wells JS, Hunter JC, Astle GL, Sherwood JC, Ricca cM, Trejo WH, et al. Distribution of β-lactam and β-lactone producing bacteria in nature. The. J Antibiot. 1982;35:814–21.

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Vetsigian K, Jajoo R, Kishony R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol. 2011;9:e1001184.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, et al. Antibiotics in agroecosystems: introduction to the special section. J Environ Qual. 2016;45:377–93.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int. 2009;35:803–14.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Kelsic ED, Zhao J, Vetsigian K, Kishony R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature. 2015;521:516–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science. 2012;337:1228–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Schlatter DC, Song Z, Vaz-Jauri P, Kinkel LL. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. Plos One. 2019;14:e0223779.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, Van Wezel GP, et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci. 2015;112:11054–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Andersson DI, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999;2:489–93.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Handwerger S, Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Annu Rev Pharmacol Toxicol. 1985;25:349–80.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol. 2014;49:91–101.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Wood KB, Cluzel P. Trade-offs between drug toxicity and benefit in the multi-antibiotic resistance system underlie optimal growth of E. coli. BMC Syst Biol. 2012;6:1–11.

    Article 

    Google Scholar 

  • 23.

    Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Meredith HR, Srimani JK, Lee AJ, Lopatkin AJ, You L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol. 2015;11:182.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgens CE, Hoehn MM, et al. beta.-Lactam antibiotics from Streptomyces. J Am Chem Soc. 1971;93:2308–10.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Imada A, Kitano K, Kintaka K, Muroi M, Asai M. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature. 1981;289:590–1.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Sykes R, Cimarusti C, Bonner D, Bush K, Floyd D, Georgopapadakou N, et al. Monocyclic β-lactam antibiotics produced by bacteria. Nature. 1981;291:489.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Wells JS, TREJO WH, PRINCIPE PA, Bush K, Georgopapadakou N, Bonner DP, et al. EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. J Antibiot. 1982;35:295–9.

    CAS 
    Article 

    Google Scholar 

  • 29.

    ThaKurIa B, Lahon K. The beta lactam antibiotics as an empirical therapy in a developing country: An update on their current status and recommendations to counter the resistance against them. J Clin Diagn Res. 2013;7:1207.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Russ D, Glaser F, Tamar ES, Yelin I, Baym M, Kelsic ED, et al. Escape mutations circumvent a tradeoff between resistance to a beta-lactam and resistance to a beta-lactamase inhibitor. Nat Commun. 2020;11:1–9.

    Article 
    CAS 

    Google Scholar 

  • 31.

    Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife. 2019;8:e48508.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Orevi T, Kashtan N. Life in a droplet: microbial ecology in microscopic surface wetness. Front Microbiol. 2021;12:797.

    Article 

    Google Scholar 

  • 33.

    Mauer LJ, Taylor LS. Water-solids interactions: deliquescence. Annu Rev food Sci Technol. 2010;1:41–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Wise ME, Martin ST, Russell LM, Buseck PR. Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci Technol. 2008;42:281–94.

    CAS 
    Article 

    Google Scholar 

  • 35.

    Burkhardt J, Koch K, Kaiser H. Deliquescence of deposited atmospheric particles on leaf surfaces. J Water, Air Soil Pollut: Focus. 2001;1:313–21.

    CAS 
    Article 

    Google Scholar 

  • 36.

    Beattie GA. Water relations in the Interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol. 2011;49:533–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Davila AF, Hawes I, Ascaso C, Wierzchos J. Salt deliquescence drives photosynthesis in the hyperarid A tacama D esert. Environ Microbiol Rep. 2013;5:583–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Dai S, Shin H, Santamarina JC. Formation and development of salt crusts on soil surfaces. Acta Geotechnica. 2016;11:1103–9.

    Article 

    Google Scholar 

  • 39.

    Trechsel HR. Moisture control in buildings. ASTM International; West Conshohocken, PA19428-2959, USA; 1994.

  • 40.

    Schwartz-Narbonne H, Donaldson DJ. Water uptake by indoor surface films. Sci Rep. 2019;9:1–10.

    CAS 
    Article 

    Google Scholar 

  • 41.

    Patrick D, Findon G, Miller T. Residual moisture determines the level of touch-contact-associated bacterial transfer following hand washing. Epidemiol Infect. 1997;119:319–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Tang IN, Munkelwitz HR. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos Environ Part A Gen Top. 1993;27:467–73.

    Article 

    Google Scholar 

  • 43.

    Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed. 2005;44:7520–40.

    Article 
    CAS 

    Google Scholar 

  • 44.

    Tecon R. Bacterial survival: life on a leaf. eLife. 2019;8:e52123.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Vejerano EP, Marr LC. Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018;15:20170939.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Rubasinghege G, Grassian VH. Role (s) of adsorbed water in the surface chemistry of environmental interfaces. Chem Commun. 2013;49:3071–94.

    CAS 
    Article 

    Google Scholar 

  • 47.

    Campbell TD, Febrian R, McCarthy JT, Kleinschmidt HE, Forsythe JG, Bracher PJ. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat Commun. 2019;10:1–7.

    Article 
    CAS 

    Google Scholar 

  • 48.

    Alsved M, Holm S, Christiansen S, Smidt M, Rosati B, Ling M, et al. Effect of aerosolization and drying on the viability of pseudomonas syringae cells. Front Microbiol. 2018;9:3086.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Xie X, Li Y, Zhang T, Fang HH. Bacterial survival in evaporating deposited droplets on a teflon-coated surface. Appl Microbiol Biotechnol. 2006;73:703–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Runkel S, Wells HC, Rowley G. Living with stress: a lesson from the enteric pathogen Salmonella enterica. Adv Appl Microbiol. 2013;83:87–144.

  • 51.

    Amaeze N, Akinbobola A, Chukwuemeka V, Abalkhaila A, Ramage G, Kean R, et al. Development of a high throughput and low cost model for the study of semi-dry biofilms. Biofouling. 2020:36:403–15.

  • 52.

    Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. The rate of killing of Escherichia coli byβ-lactam antibiotics is strictly proportional to the rate of bacterial growth. Microbiology. 1986;132:1297–304.

    CAS 
    Article 

    Google Scholar 

  • 53.

    Eng R, Padberg F, Smith S, Tan E, Cherubin C. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrobial Agents Chemother. 1991;35:1824–8.

    CAS 
    Article 

    Google Scholar 

  • 54.

    Lee S, Foley E, Epstein JA. Mode of action of penicillin: I. Bacterial growth and penicillin activity—Staphylococcus aureus FDA. J Bacteriol. 1944;48:393.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L, et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat Microbiol. 2019;4:2109–17.

  • 56.

    Yoon H, Park B-Y, Oh M-H, Choi K-H, Yoon Y. Effect of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. BioMed Res Int. 2013;2013:274096.

  • 57.

    Zhu M, Dai X. High salt cross-protects Escherichia coli from antibiotic treatment through increasing efflux pump expression. mSphere 3: e00095-18. mSphere. 2018;3:e00095–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Lee AJ, Wang S, Meredith HR, Zhuang B, Dai Z, You L. Robust, linear correlations between growth rates and β-lactam–mediated lysis rates. Proc Natl Acad Sci. 2018;115:4069–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Loftin KA, Adams CD, Meyer MT, Surampalli R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J Environ Qual. 2008;37:378–86.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Thonus IP, Fontijne P, Michel MF. Ampicillin susceptibility and ampicillin-induced killing rate of Escherichia coli. Antimicrobial Agents Chemother. 1982;22:386–90.

    CAS 
    Article 

    Google Scholar 

  • 61.

    Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159:1300–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Yao Z, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell. 2012;48:705–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol. 2011;65:189–213.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9:e1003144.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Pu Y, Zhao Z, Li Y, Zou J, Ma Q, Zhao Y, et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell. 2016;62:284–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D. Superoxide dismutase activity confers (p) ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci. 2018;115:9797–802.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Liao X, Ma Y, Daliri EB-M, Koseki S, Wei S, Liu D, et al. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci Technol. 2020;95:97–106.

    CAS 
    Article 

    Google Scholar 

  • 69.

    Levin-Reisman I, Brauner A, Ronin I, Balaban NQ. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci. 2019;116:14734–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Asegun Henry has a big idea for tackling climate change: Store up the sun

    New directions in real estate practice