in

Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs

  • 1.

    IPCC. Climate Change 2007: The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

  • 2.

    IPCC. Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (WMO, 2019).

  • 3.

    Rogers, J. C. & Mosely-Thompson, E. Atlantic Arctic cyclones and mild Siberian winters of the 1980s. Geophys. Res. Lett. 22, 799–802 (1995).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Davi, N. K., Jacoby, G. C., Curtis, A. E. & Baatarbileg, N. Extension of drought records for central Asia using tree rings: West-central Mongolia. J. Clim. 19, 288–299 (2006).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Kattsov, V. M. & Semenov, S. M. Second Roshydromet Assessment Report on Climate Change and its Consequences in Russian Federation (Roshydromet, 2014).

    Google Scholar 

  • 6.

    Savelieva, N. I., Semiletov, I. P., Vasilevskaya, L. N. & Pugach, S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Prog. Oceanogr. 47, 279–297 (2000).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Liu, X. et al. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 564, 984–996 (2018).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Cho, D. J. & Kim, K. Y. Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter. Clim. Dyn. 56, 1571–1588 (2021).

    Article 

    Google Scholar 

  • 9.

    Savkin, V. M. Reservoirs of Siberia: Consequences of their creation to water ecology and water management facilities. Sib. Ecol. J. 2, 109–121 (2000) (in Russian).

    Google Scholar 

  • 10.

    Poff, N. L. & Hart, D. D. How dams vary and why it matters for the emerging science of dam removal: An ecological classification of dams is needed to characterize how the tremendous variation in the size, operational mode, age, and number of dams in a river basin influences the potential for restoring regulated rivers via dam removal. Bioscience 52, 659–668 (2002).

    Article 

    Google Scholar 

  • 11.

    Osika, D. G., Otinova, AYu. & Ponomareva, N. L. About the origin of the global warming and the reasons for the formation of climatic anomalies and disasters. Arid Ecosyst. 19, 104–112 (2013) (in Russian).

    Google Scholar 

  • 12.

    Aras, E. Effects of multiple dam projects on river ecology and climate change: Çoruh River Basin, Turkey. Adv. Environ. Res. 7, 121 (2018).

    Google Scholar 

  • 13.

    Shen, P. & Zhao, S. 1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes. Clim. Change 164, 59. https://doi.org/10.1007/s10584-021-03045-9 (2021).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Ward, J. V. & Stanford, J. A. The Ecology of Regulated Streams (Plenum Press, 1979).

    Book 

    Google Scholar 

  • 15.

    Ligon, F. K., Dietrich, W. E. & Trush, W. J. Downstream ecological effects of dams. Bioscience 45, 183–192 (1995).

    Article 

    Google Scholar 

  • 16.

    Gyau-Boakye, P. Environmental impacts of the Akosombo dam and effects of climate change on the lake levels. Environ. Dev. Sustain. 3, 17–29 (2001).

    Article 

    Google Scholar 

  • 17.

    Muth, R. T. et al. Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam. Final Report, Upper Colorado River Endangered Fish Recovery Program Project FG-53 (UCREFRP, 2000).

  • 18.

    Degu, A. M. et al. The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett. 38, L04405. https://doi.org/10.1029/2010GL046482 (2011).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Normatov, I. S., Muminov, A. & Normatov, P. I. The impact of water reservoirs on biodiversity and food security. Creation of adaptation mechanisms. Glob. Perspect. Eng. Manag. 1, 21–25 (2012).

    Google Scholar 

  • 20.

    Butorin, N. V., Vendrov, S. L., Dyakonov, K. N., Reteyum, A. Y. & Romanenko, V. I. Effect of the Rybinsk reservoir on the surrounding area. In Man-Made Lakes: Their Problems and Environmental Effects (eds Ackerman, W. C. et al.) 246–250 (American Geophysical Union, 1973).

    Google Scholar 

  • 21.

    American Society of Civil Engineers. Guidelines for Retirement of Dams and Hydroelectric Facilities (American Society of Civil Engineers, 1997).

    Google Scholar 

  • 22.

    Rosenzweig, C. et al. Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L. et al.) 79–131 (Cambridge UP, 2007).

    Google Scholar 

  • 23.

    Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Gill, D. S., Amthor, J. S. & Bormann, F. H. Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiol. 18, 281–289 (1998).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Augspurger, C. K., Cheeseman, J. M. & Salk, C. F. Light gains and physiological capacity of understory woody plants during phenological avoidance of canopy shade. Funct. Ecol. 19, 537–546 (2005).

    Article 

    Google Scholar 

  • 26.

    Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Glob. Chang. Biol. 10, 1133–1145 (2004).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Zeng, H., Jia, G. & Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett. 6, 045508. https://doi.org/10.1088/1748-9326/6/4/045508 (2011).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. PNAS 117, 10397–10405 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Badeck, F.-W. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309 (2004).

    Article 

    Google Scholar 

  • 30.

    Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Rossi, S., Girard, M.-J.J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    McCarty, J. P. Ecological consequences of recent climate change. Conserv. Biol. 15, 320–331 (2001).

    Article 

    Google Scholar 

  • 33.

    Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. Oceans 94, 14485–14498 (1989).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Hunt, J. D. et al. Hydropower impact on the river flow of a humid regional climate. Clim. Change 163, 379–393 (2020).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Kosmakov, I. V. Thermal and Ice Regime in the Upper and Lower Reaches of High-Pressure Hydroelectric Power Stations on the Yenisei (Klaretianum, 2001) (in Russian).

    Google Scholar 

  • 36.

    Bryzgalov, V. I. From the Experience of Creation and Development of the Krasnoyarsk and Sayano-Shushenskaya Hydroelectric Power Plants (Siberian Publ. House “Surikov,” 1999) (in Russian).

    Google Scholar 

  • 37.

    Sheffield, J., Andreadis, K. M. & Wood, E. F. Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Clim. 22, 1962–1981 (2009).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Liu, H. et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Change Biol. 19, 2500–2510 (2013).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451. https://doi.org/10.1038/s41467-020-20678-z (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Amrit, K., Pandey, R. P., Mishra, S. K. & Daradur, M. Relationship of drought frequency and severity with range of annual temperature variation. Nat. Hazards 92, 1199–1210 (2018).

    Article 

    Google Scholar 

  • 41.

    Jackson, R. D., Idso, S. B., Reginato, R. J. & Pinter, P. J. Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4), 1133–1138 (1981).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Bao, G., Liu, Y. & Linderholm, H. W. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313, 162–172 (2012).

    Article 

    Google Scholar 

  • 43.

    de Vrese, P. & Stacke, T. Irrigation and hydrometeorological extremes. Clim. Dyn. 55, 1521–1537 (2020).

    Article 

    Google Scholar 

  • 44.

    Gustokashina, N. N. & Balybina, A. S. Variation in the natural-climatic characteristics of the territory adjacent to the reservoirs of the Angara chain of power plants. Geogr. Nat. Res. 4, 93–100 (2005) (in Russian).

    Google Scholar 

  • 45.

    Arzac, A. et al. Increasing radial and latewood growth rates of Larix cajanderi Mayr. and Pinus sylvestris L. in the continuous permafrost zone in Central Yakutia (Russia). Ann. For. Sci. 76, 96 (2019).

    Article 

    Google Scholar 

  • 46.

    Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).

    Article 

    Google Scholar 

  • 47.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Piper, F. I. & Fajardo, A. Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. J. Ecol. 102, 1101–1111 (2014).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Khansaritoreh, E., Schuldt, B. & Dulamsuren, C. Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Ann. For. Sci. 75, 30. https://doi.org/10.1007/s13595-018-0701-2 (2018).

    Article 

    Google Scholar 

  • 50.

    Urban, J., Rubtsov, A. V., Urban, A. V., Shashkin, A. V. & Benkova, V. E. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agric. For. Meteorol. 271, 64–72 (2019).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Kolari, P., Lappalainen, H. K., HäNninen, H. & Hari, P. Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus B Chem. Phys. Meteorol. 59, 542–552 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Wu, J., Guan, D., Yuan, F., Wang, A. & Jin, C. Soil temperature triggers the onset of photosynthesis in Korean pine. PLoS ONE 8, e65401. https://doi.org/10.1371/journal.pone.0065401 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Yang, Q. et al. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nat. Commun. 11, 128. https://doi.org/10.1038/s41467-019-13954-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Tanja, S. et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Change Biol. 9, 1410–1426 (2003).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Sevanto, S. et al. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 26, 749–757 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).

    Article 

    Google Scholar 

  • 57.

    Babushkina, E. A., Belokopytova, L. V., Zhirnova, D. F. & Vaganov, E. A. Siberian spruce tree ring anatomy: Imprint of development processes and their high-temporal environmental regulation. Dendrochronologia 53, 114–124 (2019).

    Article 

    Google Scholar 

  • 58.

    Cannell, M. G. R. & Smith, R. I. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol. 23, 177–191 (1986).

    Article 

    Google Scholar 

  • 59.

    Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146 (2008).

    Article 

    Google Scholar 

  • 60.

    Ziaco, E., Biondi, F., Rossi, S. & Deslauriers, A. Environmental drivers of cambial phenology in Great Basin bristlecone pine. Tree Physiol. 36, 818–831 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Rahman, M. H. et al. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci. Rep. 10, 14341. https://doi.org/10.1038/s41598-020-70356-9 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Katz, R. W. & Brown, B. G. Extreme events in a changing climate: Variability is more important than averages. Clim. Chang. 21, 289–302 (1992).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Germain, S. J. & Lutz, J. A. Climate extremes may be more important than climate means when predicting species range shifts. Clim. Chang. 163, 579–598 (2020).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Vendrov, S. L., Avakyan, A. B., Dyakonov, K. N. & Reteyum, A. Y. The Role of Reservoirs in Changing Natural Conditions (Znaniye, 1968) (in Russian).

    Google Scholar 

  • 65.

    Stivari, S. M., De Oliveira, A. P. & Soares, J. On the climate impact of the local circulation in the Itaipu Lake area. Clim. Chang. 72, 103–121 (2005).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Wilks, D. S. Statistical Methods in the Atmospheric Sciences 4th edn. (Elsevier, 2019).

    Google Scholar 

  • 67.

    Arguez, A. & Vose, R. S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 92, 699–704 (2011).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Rosgidromet. Guidelines for the Compilation of Agrometeorological Yearbook for the Agricultural Zone of the Russian Federation. Guiding Document 52.33.725–2010 (Russian Scientific Research Institute of Hydrometeorological Information, World Data Center, 2010) (in Russian).

  • 69.

    Chae, H. et al. Local variability in temperature, humidity and radiation in the Baekdu Daegan Mountain protected area of Korea. J. Mt. Sci. 9, 613–627 (2012).

    Article 

    Google Scholar 

  • 70.

    Wypych, A., Ustrnul, Z. & Schmatz, D. R. Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J. Mt. Sci. 15, 237–253 (2018).

    Article 

    Google Scholar 

  • 71.

    Selyaninov, G. T. About climate agricultural estimation. Proc. Agric. Meteorol. 20, 165–177 (1928) (in Russian).

    Google Scholar 

  • 72.

    Babushkina, E. A., Belokopytova, L. V., Grachev, A. M., Meko, D. M. & Vaganov, E. A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Change. 17, 1725–1737 (2017).

    Article 

    Google Scholar 

  • 73.

    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology. Application in Environmental Sciences (Kluwer Academic Publishers, 1990).

    Book 

    Google Scholar 

  • 74.

    Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications: User Reference (RINNTECH, 2003).

    Google Scholar 

  • 75.

    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).

    Google Scholar 

  • 76.

    Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57, 205–221 (2001).

    Google Scholar 

  • 77.

    Cook, E. R, Krusic, P. J., Holmes, R. H. & Peters, K. Program ARSTAN Ver. ARS41d. https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (2007).

  • 78.

    Strackee, J. & Jansma, E. The statistical properties of mean sensitivity—A reappraisal. Dendrochronologia 10, 121–135 (1992).

    Google Scholar 

  • 79.

    Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 23, 201–213 (1984).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Yasmeen, S. et al. Contrasting climate-growth relationship between Larix gmelinii and Pinus sylvestris var. mongolica along a latitudinal gradient in Daxing’an Mountains, China. Dendrochronologia 58, 125645. https://doi.org/10.1016/j.dendro.2019.125645 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Asegun Henry has a big idea for tackling climate change: Store up the sun

    New directions in real estate practice