in

Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history

  • 1.

    Reddin, C. J., Kocsis, Á. T., Aberhan, M. & Kiessling, W. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Glob. Chang. Biol. 27, 868–878 (2021).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Marine invertebrate migrations trace climate change over 450 million years. Glob. Ecol. Biogeogr. 27, 704–713 (2018).

    Article 

    Google Scholar 

  • 3.

    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Bio. Ecol. 400, 218–226 (2011).

    Article 

    Google Scholar 

  • 4.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).

    Article 

    Google Scholar 

  • 5.

    Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519 (1993).

    Article 

    Google Scholar 

  • 6.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U. S. A. 109, 19310–19314 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).

    Article 

    Google Scholar 

  • 9.

    Garilli, V. et al. Physiological advantages of dwarfing in surviving extinctions in high-CO 2 oceans. Nat. Clim. Chang. 5, 678–682 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0902080106 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Angilletta, M. J., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Hoving, H. J. T. et al. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Chang. Biol. 19, 2089–2103 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Vinarski, M. V. On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol. Bull. Rev. 4, 232–242 (2014).

    Article 

    Google Scholar 

  • 16.

    Atkinson, D. Temperature and organism size: a biological law for organisms?. Adv. Ecol. Res. 25, 1–58 (1994).

    Article 

    Google Scholar 

  • 17.

    Atkinson, D. Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).

    Article 

    Google Scholar 

  • 18.

    Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).

    Article 

    Google Scholar 

  • 19.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Riemer, K., Anderson-Teixeira, K. J., Smith, F. A., Harris, D. J. & Ernest, S. K. M. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Glob. Ecol. Biogeogr. 27, 958–967 (2018).

    Article 

    Google Scholar 

  • 23.

    Rosa, R. et al. Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE 7, e38282 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Pecl, G. T. & Jackson, G. D. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Rev. Fish Biol. Fish. 18, 373–385 (2008).

    Article 

    Google Scholar 

  • 25.

    Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).

    Article 

    Google Scholar 

  • 26.

    Harries, P. J. & Knorr, P. O. What does the ‘Lilliput Effect’ mean?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).

    Article 

    Google Scholar 

  • 27.

    Metcalfe, B., Twitchett, R. J. & Price-Lloyd, N. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 171–180 (2011).

    Article 

    Google Scholar 

  • 28.

    Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).

    Article 

    Google Scholar 

  • 29.

    Urbanek, A. Biotic crises in the history of upper silurian graptoloids: a palaeobiological model. Hist. Biol. https://doi.org/10.1080/10292389309380442 (1993).

    Article 

    Google Scholar 

  • 30.

    Urlichs, M. Stunting in invertebrates from the type area of the Cassian Formation (Early Carnian) of the dolomites (Italy). GeoAlp 8, 164–169 (2011).

    Google Scholar 

  • 31.

    Morten, S. D. & Twitchett, R. J. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2009.08.023 (2009).

    Article 

    Google Scholar 

  • 32.

    Piazza, V., Ullmann, C. V. & Aberhan, M. Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event. Sci. Rep. 10, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Ann. Rev. Mar. Sci. 11, 369–390 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Gerber, S. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37, 369–382 (2011).

    Article 

    Google Scholar 

  • 35.

    Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).

    Article 

    Google Scholar 

  • 37.

    Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Percival, L. M. E. et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province. Earth Planet. Sci. Lett. 428, 267–280 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Foster, G. L., Hull, P., Lunt, D. J. & Zachos, J. C. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. R. Soc. A 376, 20170086 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Suan, G. et al. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. Lett. 290, 448–458 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth Sci. Rev. 198, 102932 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Müller, T. et al. Ocean acidification during the early Toarcian extinction event: Evidence from Boron isotopes in brachiopods. Geology 48, 1184–1188 (2020).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin Portugal. Paleoceanography 23, A1202 (2008).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Dera, G. et al. High-resolution dynamics of early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites (Cephalopoda). J. Geol. Soc. London 167, 21–33 (2010).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Dera, G. et al. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–218 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Miguez-Salas, O., Rodríguez-Tovar, F. J. & Duarte, L. V. Selective incidence of the Toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from the Lusitanian basin Portugal. Lethaia 50, 548–560 (2017).

    Article 

    Google Scholar 

  • 47.

    Correia, V. F., Riding, J. B., Duarte, L. V., Fernandes, P. & Pereira, Z. The palynological response to the Toarcian Oceanic Anoxic Event (Early Jurassic) at Peniche, Lusitanian Basin, western Portugal. Mar. Micropaleontol. 137, 46–63. https://doi.org/10.1016/j.marmicro.2017.10.004 (2017).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian-Toarcian crisis. R. Soc. Open Sci. 6, 190494 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Caswell, B. A. & Coe, A. L. The impact of anoxia on pelagic macrofauna during the Toarcian Oceanic Anoxic Event (Early Jurassic). Proc. Geol. Assoc. 125(4), 383–391. https://doi.org/10.1016/j.pgeola.2014.06.001 (2014).

    Article 

    Google Scholar 

  • 50.

    Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl. Acad. Sci. U. S. A. 111, 10073–10076 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Dera, G., Toumoulin, A. & de Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).

    Article 

    Google Scholar 

  • 52.

    Neige, P., Weis, R. & Fara, E. Ups and downs of belemnite diversity in the Early Jurassic of Western Tethys. Palaeontology 64, 263–283 (2021).

    Article 

    Google Scholar 

  • 53.

    Rita, P., De Baets, K. & Schlott, M. Rostrum size differences between Toarcian belemnite battlefields. Foss. Rec. 21, 171–182 (2018).

    Article 

    Google Scholar 

  • 54.

    Rita, P. et al. Biogeographic patterns of belemnite body size responses to episodes of environmental crisis. PeerJ Prepr. (2019).

  • 55.

    Hoffmann, R. & Stevens, K. The palaeobiology of belemnites – foundation for the interpretation of rostrum geochemistry. Biol. Rev. 95, 94–123 (2020).

    Article 

    Google Scholar 

  • 56.

    Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article 

    Google Scholar 

  • 57.

    Schlegelmilch, R. Die Belemniten des süddeutschen Jura. Die Belemniten des süddeutschen Jura https://doi.org/10.1007/978-3-8274-3083-0 (1998).

    Article 

    Google Scholar 

  • 58.

    McArthur, J. M. et al. Sr-isotope stratigraphy (87Sr/86Sr) of the lowermost Toarcian of Peniche, Portugal, and its relation to ammonite zonations. Newsletters Stratigr. 53, 297–312 (2020).

    Article 

    Google Scholar 

  • 59.

    Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 60.

    Klug, C., Schweigert, G., Fuchs, D., Kruta, I. & Tischlinger, H. Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biol. Lett. 12, 20150877 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Seibel, B. A., Thuesen, E. V., Childress, J. J. & Gorodezky, L. A. Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull. 192, 262–278 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Mattioli, E., Pittet, B., Petitpierre, L. & Mailliot, S. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Glob. Planet. Change 65, 134–145 (2009).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Chamberlain, J. A. Locomotion in ancient seas: Constraint and opportunity in Cephalopod adaptive design. Geobios 15, 49–61 (1993).

    Article 

    Google Scholar 

  • 64.

    Rexfort, A. & Mutterlose, J. The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 153–163 (2009).

    Article 

    Google Scholar 

  • 65.

    Holland, S. M. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26, 148–168 (2000).

    Article 

    Google Scholar 

  • 66.

    Holland, S. M. The non-uniformity of fossil preservation. Philos. Trans. R. Soc. B Biol. Sci. 371, 2 (2016).

    Google Scholar 

  • 67.

    Korn, D. Impact of enviornmental perturbations o heterochronic develpments in Palaeozoic ammonoids. Evol. Chang. Heterochrony 245–260 (1995).

  • 68.

    Yacobucci, M. M. Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids. in Advancing research on living and fossil cephalopods 59–76 (Springer, Boston, MA, 1999).

  • 69.

    Landman, N. H. & Gyssant, J. R. Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 26, 247–255 (1993).

    Article 

    Google Scholar 

  • 70.

    McNamara, K. J. Heterochrony: the evolution of development. Evol. Educ. Outreach 5, 203–218 (2012).

    Article 

    Google Scholar 

  • 71.

    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Pörtner, H. O. & Farrell, A. P. Ecology: Physiology and climate change. Science https://doi.org/10.1126/science.1163156 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Pimentel, M. S. et al. Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Mar. Biol. 159, 2051–2059 (2012).

    Article 

    Google Scholar 

  • 74.

    Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, 1–13 (2014).

    Article 
    CAS 

    Google Scholar 

  • 75.

    Pörtner, H. O., Bock, C. & Mark, F. C. Oxygen- & capacity-limited thermal tolerance: Bridging ecology & physiology. J. Exp. Biol. 220, 2685–2696 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B Biol. Sci. 279, 4969–4976 (2012).

    Article 

    Google Scholar 

  • 77.

    Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).

    Article 

    Google Scholar 

  • 78.

    Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Sigwart, J. D. et al. Elevated pCO2 drives lower growth and yet increased calcification in the early life history of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) Julia. ICES J. Mar. Sci. 73, 970–980 (2016).

    Article 

    Google Scholar 

  • 80.

    Gutowska, M. A., Melzner, F., Pörtner, H. O. & Meier, S. Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar. Biol. 157, 1653–1663 (2010).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Kaplan, M. B., Mooney, T. A., McCorkle, D. C. & Cohen, A. L. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS ONE 8, e63714 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Otjacques, E. et al. Cuttlefish buoyancy in response to food availability and ocean acidification. Biology (Basel). https://doi.org/10.3390/biology9070147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Neige, P. & Boletzky, S. Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): Intra- and interspecific variation. Zool. Beitraege. 38, 137–156 (1997).

    Google Scholar 

  • 84.

    Rita, P., Weis, R., Duarte, L. V. & De Baets, K. Taxonomical diversity and palaeobiogeographical affinity of belemnites from the Pliensbachian-Toarcian GSSP (Lusitanian Basin, Portugal). Pap. Palaeontol. https://doi.org/10.1002/spp2.1343 (2020).

    Article 

    Google Scholar 

  • 85.

    MacArthur, R. H. Geographical ecology: patterns in the distribution of species. (Princeton University Press, 1972).

  • 86.

    Gaston, K. J. The structure and dynamics of geographic ranges. (Oxford University Press on Demand, 2003).

  • 87.

    Duarte, L. Sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian marly limestones in the Lusitanian Basin Portugal. Ciências da Terra 16, 17–23 (2007).

    Google Scholar 

  • 88.

    Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H.-O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Chang. 10, 249–253 (2020).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Doyle, P. & Kelly, R. A. The Jurassic and Cretaceous belemnites of Kong Karls Land, Svalbard. (Norsk Polarinstitutt Oslo, 1988).

  • 90.

    Doyle, P. New records of dimitobelid belemnites from the cretaceous of james ross island Antarctica. Alcheringa 14, 159–175 (1990).

    Article 

    Google Scholar 

  • 91.

    Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging https://doi.org/10.1016/j.mri.2012.05.001 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Rohatgi, A., Rehberg, S. & Stanojevic, Z. Webplotdigitizer: Version 4.1 of Webplotdigitizer. (2018).https://doi.org/10.5281/zenodo.1137880.

  • 93.

    Plate, T. & Heiberger, R. Package ‘ abind ’. (2016).

  • 94.

    Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).

    Article 

    Google Scholar 

  • 95.

    Sherratt, E. Quick Guide to Geomorph v. 2.0. public.iastate.edu (2014).

  • 96.

    Torchiano, M. Package ‘ effsize ’. (2020).

  • 97.

    Gotelli, N. J., Dorazio, R. M., Ellison, A. M. & Grossman, G. D. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models. Philos. Trans. 365, 3621–3631 (2010).

    Article 

    Google Scholar 

  • 98.

    Hervé, M. Package ‘ RVAideMemoire ’. (2021).

  • 99.

    Mangiafico, S. Package ‘ rcompanion ’. (2021).

  • 100.

    Oksanen, J. et al. Package ‘vegan’ title community ecology package. Commun. Ecol. Packag. 2, 1–297 (2019).

    MathSciNet 

    Google Scholar 

  • 101.

    Pinheiro, J. et al. Package ‘nlme’. (2021).

  • 102.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).

    Article 

    Google Scholar 

  • 103.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria (2019).

  • 104.

    Garnier, S., Ross, N., Rudis, B. & Sciaini, M. Package ‘viridis’. (2021).


  • Source: Ecology - nature.com

    Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics

    Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island