De Grave, S. & Fransen, C. H. J. M. Carideorum Catalogus: The recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool. Med. Leiden 85(9), 195–588 (2011).
Shen, H., Braband, A. & Scholtz, G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 66(3), 776–789 (2013).
Google Scholar
Chace, F. A. Jr. & Kensley, B. The cardiac notch in decapods. J. Crustacean Biol. 12(3), 442–447 (1992).
Google Scholar
Holthuis, L.B., Fransen, C.H.J.M. & Van Achterberg, C. The recent genera of the Caridean and Stenopodidean shrimps (Crustacea, Decapoda): with an appendix on the order Amphionidacea. Nationaal Natuurhistorisch Museum, Leiden, pp. 6–328 (1993).
Martin, J. W. & Davis, G. E. An updated classification of the recent Crustacea. Los Angeles: Natural History Museum of County. Contrib. Sci. 39, 1–124 (2001).
De Grave, S. et al. A classification of living and fossil genera of decapod crustaceans. Raffles Bull. Zool. Suppl. 21, 1–109 (2009).
Bracken, H. D., De Grave, S. & Felder, D. L. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). Decapod Crustacean Phylogenet. 18, 274–298 (2009).
Li, C. P., De Grave, S., Lei, H. C., Chan, T. Y. & Chu, K. H. Molecular systematics of caridean shrimps based on five nuclear genes: Implications for superfamily classification. Zool. Anz. 250, 270–279 (2011).
Google Scholar
De Grave, S., Li, C. P., Tsang, L. M., Chu, K. H. & Chan, T. Y. Unweaving hippolytoid systematics (Crustacea, Decapoda, Hippolytidae): Resurrection of several families. Zool. Scr. 43(5), 496–507 (2014).
Google Scholar
Baeza, J. A. Protandric simultaneous hermaphroditism in the shrimps Lysmata bahia and Lysmata intermedia. Invertebr. Biol. 127(2), 181–188 (2008).
Google Scholar
Baeza, J. A. & Bauer, R. T. Experimental test of social mediation of sex change in a protandric sequential hermaphrodite; the marine shrimp Lysmata wurdemanni (Crustacea: Caridea). Behav. Ecol. Sociobiol. 55, 544–550 (2004).
Google Scholar
Xu, Y., Song, L. S. & Li, X. Z. The molecular phylogeny of Caridea based on 16S rDNA sequences. Mar. Sci. 29(9), 36–41 (2005).
Google Scholar
Baeza, J. A. Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60, 1840–1850 (2006).
Google Scholar
Baeza, J. A. Molecular systematics of peppermint and cleaner shrimps: phylogeny and taxonomy of the genera Lysmata and Exhippolysmata (Crustacea: Caridea: Hippolytidae). Zool. J. Linn. Soc. Lond. 160, 254–265 (2010).
Google Scholar
Baeza, J. A. Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): A test of the ‘Tomlinson-Ghiselin’ hypothesis explaining the evolution of hermaphroditism. Mol. Phylogenet. Evol. 69, 46–62 (2013).
Google Scholar
Baeza, J. A. & Prakash, S. An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’ shrimp Lysmata wurdemanni sensu stricto. Zool. J. Linn. Soc. Lond. 185(4), 1018–1038 (2019).
Google Scholar
Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27(8), 1767–1780 (1999).
Google Scholar
Liu, Q. N., Zhu, B. J., Dai, L. S., Wei, G. Q. & Liu, C. L. The complete mitochondrial genome of the wild silkworm moth, Actias selene. Gene 505(2), 291–299 (2012).
Google Scholar
Tan, M. H. et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci. Rep. 9, 10756 (2019).
Google Scholar
Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101(4), 301–320 (2008).
Google Scholar
Rich, A. & Rajbhandary, U. L. Transfer RNA: Molecular structure, sequence, and properties. Annu. Rev. Biochem. 45(1), 805–860 (1976).
Google Scholar
Staton, J. L., Daehler, L. L. & Brown, W. M. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: Conservation of major features among arthropod classes. Mol. Biol. Evol. 14(8), 867–874 (1997).
Google Scholar
Miller, A. D., Murphy, N. P., Burridge, C. P. & Austin, C. M. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar. Biotechnol. 7(4), 339–349 (2005).
Google Scholar
Ivey, J. L. & Santos, S. R. The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene 394(1–2), 35–44 (2007).
Google Scholar
Wang, Z. et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. Int. J. Biol. Macromol. 118, 31–40 (2018).
Google Scholar
Lü, Z. M. et al. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int. J. Biol. Macromol. 135, 609–618 (2019).
Google Scholar
Shen, X., Li, X., Sha, Z., Yan, B. & Xu, Q. Complete mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus (Crustacea: Decapoda: Caridea): Gene rearrangement and phylogeny within Caridea. Sci. China Life Sci. 55(7), 591–598 (2012).
Google Scholar
Wang, Q. et al. Characterization and comparison of the mitochondrial genomes from two Alpheidae species and insights into the phylogeny of Caridea. Genomics 112(1), 65–70 (2020).
Google Scholar
Shen, X. et al. The complete mitochondrial genome of the ridgetail white prawn Exopalaemon carinicauda Holthuis, 1950 (Crustacean: Decapoda: Palaemonidae) revealed a novel rearrangement of tRNA genes. Gene 437(1–2), 1–8 (2009).
Google Scholar
Moritz, C. & Brown, W. M. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. 84(20), 7183–7187 (1987).
Google Scholar
Lavrov, D. V., Boore, J. L. & Brown, W. M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss. Mol. Biol. Evol. 19(2), 163–169 (2002).
Google Scholar
Lunt, D. H. & Hyman, B. C. Animal mitochondrial DNA recombination. Nature 387(6630), 247 (1997).
Google Scholar
Dowton, M. & Campbell, N. J. H. Intramitochondrial recombination-is it why some mitochondrial genes sleep around?. Trends Ecol. Evol. 16(6), 269–271 (2001).
Google Scholar
Sun, S., Cheng, J., Sun, S. & Sha, Z. Complete mitochondrial genomes of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis: Insights into the phylogenetic position of Pandalidae (Decapoda:Caridea). J. Oceanol. Limnol. 38(3), 816–825 (2020).
Google Scholar
Tan, M. H., Gan, H. M., Lee, Y. P., Poore, G. C. & Austin, C. M. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). Peer J. 5, e2982 (2017).
Google Scholar
Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).
Google Scholar
Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4), e18 (2017).
Google Scholar
Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).
Google Scholar
Grant, J. R. & Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 36, 181–184 (2008).
Google Scholar
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
Google Scholar
Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647 (2001).
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).
Google Scholar
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17(4), 540–552 (2000).
Google Scholar
Xia, X. & Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92(4), 371–373 (2001).
Google Scholar
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).
Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Google Scholar
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
Google Scholar
Nylander, J. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53(1), 47–67 (2004).
Google Scholar
Source: Ecology - nature.com