in

The first mitochondrial genome of the genus Exhippolysmata (Decapoda: Caridea: Lysmatidae), with gene rearrangements and phylogenetic associations in Caridea

  • 1.

    De Grave, S. & Fransen, C. H. J. M. Carideorum Catalogus: The recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool. Med. Leiden 85(9), 195–588 (2011).

    Google Scholar 

  • 2.

    Shen, H., Braband, A. & Scholtz, G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 66(3), 776–789 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Chace, F. A. Jr. & Kensley, B. The cardiac notch in decapods. J. Crustacean Biol. 12(3), 442–447 (1992).

    Article 

    Google Scholar 

  • 4.

    Holthuis, L.B., Fransen, C.H.J.M. & Van Achterberg, C. The recent genera of the Caridean and Stenopodidean shrimps (Crustacea, Decapoda): with an appendix on the order Amphionidacea. Nationaal Natuurhistorisch Museum, Leiden, pp. 6–328 (1993).

  • 5.

    Martin, J. W. & Davis, G. E. An updated classification of the recent Crustacea. Los Angeles: Natural History Museum of County. Contrib. Sci. 39, 1–124 (2001).

    Google Scholar 

  • 6.

    De Grave, S. et al. A classification of living and fossil genera of decapod crustaceans. Raffles Bull. Zool. Suppl. 21, 1–109 (2009).

    Google Scholar 

  • 7.

    Bracken, H. D., De Grave, S. & Felder, D. L. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). Decapod Crustacean Phylogenet. 18, 274–298 (2009).

    Google Scholar 

  • 8.

    Li, C. P., De Grave, S., Lei, H. C., Chan, T. Y. & Chu, K. H. Molecular systematics of caridean shrimps based on five nuclear genes: Implications for superfamily classification. Zool. Anz. 250, 270–279 (2011).

    Article 

    Google Scholar 

  • 9.

    De Grave, S., Li, C. P., Tsang, L. M., Chu, K. H. & Chan, T. Y. Unweaving hippolytoid systematics (Crustacea, Decapoda, Hippolytidae): Resurrection of several families. Zool. Scr. 43(5), 496–507 (2014).

    Article 

    Google Scholar 

  • 10.

    Baeza, J. A. Protandric simultaneous hermaphroditism in the shrimps Lysmata bahia and Lysmata intermedia. Invertebr. Biol. 127(2), 181–188 (2008).

    Article 

    Google Scholar 

  • 11.

    Baeza, J. A. & Bauer, R. T. Experimental test of social mediation of sex change in a protandric sequential hermaphrodite; the marine shrimp Lysmata wurdemanni (Crustacea: Caridea). Behav. Ecol. Sociobiol. 55, 544–550 (2004).

    Article 

    Google Scholar 

  • 12.

    Xu, Y., Song, L. S. & Li, X. Z. The molecular phylogeny of Caridea based on 16S rDNA sequences. Mar. Sci. 29(9), 36–41 (2005).

    CAS 

    Google Scholar 

  • 13.

    Baeza, J. A. Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60, 1840–1850 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Baeza, J. A. Molecular systematics of peppermint and cleaner shrimps: phylogeny and taxonomy of the genera Lysmata and Exhippolysmata (Crustacea: Caridea: Hippolytidae). Zool. J. Linn. Soc. Lond. 160, 254–265 (2010).

    Article 

    Google Scholar 

  • 15.

    Baeza, J. A. Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): A test of the ‘Tomlinson-Ghiselin’ hypothesis explaining the evolution of hermaphroditism. Mol. Phylogenet. Evol. 69, 46–62 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Baeza, J. A. & Prakash, S. An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’ shrimp Lysmata wurdemanni sensu stricto. Zool. J. Linn. Soc. Lond. 185(4), 1018–1038 (2019).

    Article 

    Google Scholar 

  • 17.

    Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27(8), 1767–1780 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Liu, Q. N., Zhu, B. J., Dai, L. S., Wei, G. Q. & Liu, C. L. The complete mitochondrial genome of the wild silkworm moth, Actias selene. Gene 505(2), 291–299 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Tan, M. H. et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci. Rep. 9, 10756 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101(4), 301–320 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Rich, A. & Rajbhandary, U. L. Transfer RNA: Molecular structure, sequence, and properties. Annu. Rev. Biochem. 45(1), 805–860 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Staton, J. L., Daehler, L. L. & Brown, W. M. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: Conservation of major features among arthropod classes. Mol. Biol. Evol. 14(8), 867–874 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Miller, A. D., Murphy, N. P., Burridge, C. P. & Austin, C. M. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar. Biotechnol. 7(4), 339–349 (2005).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Ivey, J. L. & Santos, S. R. The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene 394(1–2), 35–44 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Wang, Z. et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. Int. J. Biol. Macromol. 118, 31–40 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Lü, Z. M. et al. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int. J. Biol. Macromol. 135, 609–618 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Shen, X., Li, X., Sha, Z., Yan, B. & Xu, Q. Complete mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus (Crustacea: Decapoda: Caridea): Gene rearrangement and phylogeny within Caridea. Sci. China Life Sci. 55(7), 591–598 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Wang, Q. et al. Characterization and comparison of the mitochondrial genomes from two Alpheidae species and insights into the phylogeny of Caridea. Genomics 112(1), 65–70 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Shen, X. et al. The complete mitochondrial genome of the ridgetail white prawn Exopalaemon carinicauda Holthuis, 1950 (Crustacean: Decapoda: Palaemonidae) revealed a novel rearrangement of tRNA genes. Gene 437(1–2), 1–8 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Moritz, C. & Brown, W. M. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. 84(20), 7183–7187 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Lavrov, D. V., Boore, J. L. & Brown, W. M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss. Mol. Biol. Evol. 19(2), 163–169 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Lunt, D. H. & Hyman, B. C. Animal mitochondrial DNA recombination. Nature 387(6630), 247 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Dowton, M. & Campbell, N. J. H. Intramitochondrial recombination-is it why some mitochondrial genes sleep around?. Trends Ecol. Evol. 16(6), 269–271 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Sun, S., Cheng, J., Sun, S. & Sha, Z. Complete mitochondrial genomes of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis: Insights into the phylogenetic position of Pandalidae (Decapoda:Caridea). J. Oceanol. Limnol. 38(3), 816–825 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Tan, M. H., Gan, H. M., Lee, Y. P., Poore, G. C. & Austin, C. M. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). Peer J. 5, e2982 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4), e18 (2017).

    PubMed 

    Google Scholar 

  • 38.

    Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).

    Article 

    Google Scholar 

  • 39.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Grant, J. R. & Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 36, 181–184 (2008).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17(4), 540–552 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Xia, X. & Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92(4), 371–373 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Nylander, J. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53(1), 47–67 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics

    Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island