Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—An obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).
Google Scholar
Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).
Google Scholar
WHO. Regional plan of action 2019–2023 for implementation of the global vector control response 2017–2030. World Health Organization. https://apps.who.int/iris/handle/10665/325805 (2019).
Brady, O. J. & Hay, S. I. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).
Google Scholar
Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).
Google Scholar
Rosenberg, R. et al. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 67, 496–501 (2018).
Google Scholar
Hadfield, J. et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 15, e1008042 (2019).
Google Scholar
Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).
Google Scholar
CDC. Saint Louis Encephalitis. https://www.cdc.gov/sle/index.html.
Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).
Google Scholar
Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).
Google Scholar
Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).
Google Scholar
Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).
Google Scholar
Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).
Google Scholar
Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).
Google Scholar
Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, 7864 (2020).
Google Scholar
Medlock, J. M. et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect. Dis. 17, 140 (2017).
Google Scholar
Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosq. Control Assoc. 14, 83–94 (1998).
Google Scholar
Eastwood, G., Cunningham, A. A., Kramer, L. D. & Goodman, S. J. The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Med. Vet. Entomol. 33, 44–55 (2019).
Google Scholar
Napp, S., Petrić, D. & Busquets, N. West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog. Glob. Health 112, 233–248 (2018).
Google Scholar
Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).
Google Scholar
Multini, L. C., de Souza, A. L., Marrelli, M. T. & Wilke, A. B. B. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).
Google Scholar
Wilke, A. B. B., de Carvalho, G. C. & Marrelli, M. T. Microgeographic population structuring of Culex quinquefasciatus (Diptera: Culicidae) From São Paulo, Brazil. J. Med. Entomol. 54, 1582–1588 (2017).
Google Scholar
Wilk-da-Silva, R., de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).
Google Scholar
Dyar, G. & Knab, F. The larvae of Culicidae classified as independent organisms. J. N. Y. Entomol. Soc. 14, 169–230 (1906).
Laurito, M., Briscoe, A. G., Almirón, W. R. & Harbach, R. E. Systematics of the Culex coronator complex (Diptera: Culicidae): Morphological and molecular assessment. Zool. J. Linn. Soc. 182, 735–757 (2018).
Google Scholar
Demari-Silva, B. et al. Wing Morphometry and genetic variability between Culex coronator and Culex usquatus (Diptera: Culicidae), two sibling species of the coronator group. J. Med. Entomol. 54, 901–908 (2017).
Google Scholar
Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).
Google Scholar
Unlu, I., Kramer, W. L., Roy, A. F. & Foil, L. D. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana. J. Med. Entomol. 47, 625–633 (2010).
Google Scholar
CDC. Mosquito species in which West Nile virus has been detected. Centers for disease control and prevention. https://www.cdc.gov/westnile/resources/pdfs/Mosquito%20Species%201999-2012.pdf (2017).
CDC Arbovirus Catalog. Centers for disease control and prevention. https://wwwn.cdc.gov/Arbocat/Default.aspx (2018).
Scholte, E. J. et al. Introduction and control of three invasive mosquito species in the Netherlands, July–October 2010. Eurosurveillance 15, 1–4 (2010).
Google Scholar
Reiter, P. & Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).
Google Scholar
Eritja, R, et al. Worldwide invasion of vector mosquitoes: Present European distribution and challenges for Spain. Issues in Bioinvasion Science 87–97 (Springer, 2005).
Connelly, C. R., Alto, B. W. & O’Meara, G. F. The spread of Culex coronator (Diptera: Culicidae) throughout Florida. J. Vector Ecol. 41, 195–199 (2016).
Google Scholar
Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).
Google Scholar
LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).
Google Scholar
Guedes, M. L. P. & Navarro-Silva, M. A. Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae). Rev. Bras. Entomol. 58, 88–94 (2014).
Google Scholar
Miami-Dade County. Homeless trust census results and comparison. https://www.homelesstrust.org/library/january-homeless-census-results-and-comparison-2018-2019.pdf (2019).
Blosser, E. M. & Burkett-Cadena, N. D. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).
Google Scholar
Blosser, E. M. & Burkett-Cadena, N. D. Oviposition strategies of Florida Culex (Melanoconion) mosquitoes. J. Med. Entomol. 54, 812–820 (2017).
Google Scholar
Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).
Google Scholar
De Carvalho, G. C. et al. Composition and diversity of mosquitoes (Diptera: Culicidae) in urban parks in the South region of the city of São Paulo, Brazil. Biota Neotrop. 17, e20160274 (2017).
Google Scholar
Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).
Google Scholar
Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding integrated vector management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).
Google Scholar
WHO. Handbook for Integrated Vector Management (World Health Organization, Geneva, 2012).
Pagac, B. B. et al. Incursion and establishment of the Old World arbovirus vector Aedes (Fredwardsius) vittatus (Bigot, 1861) in the Americas. Acta Trop. 213, 105739 (2021).
Google Scholar
United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).
Blackmore, C. G. M. et al. Surveillance results from the first West Nile virus transmission season in Florida, 2001. Am. J. Trop. Med. Hyg. 69, 141–150 (2003).
Google Scholar
Florida Department of Health. http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)
Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE 14, e0212688 (2019).
Google Scholar
Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).
Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability, Number 26. Boca Raton; Routledge. 176 pp. https://doi.org/10.1201/9781315140919.
Source: Ecology - nature.com