in

Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida

  • 1.

    Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—An obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    WHO. Regional plan of action 2019–2023 for implementation of the global vector control response 2017–2030. World Health Organization. https://apps.who.int/iris/handle/10665/325805 (2019).

  • 4.

    Brady, O. J. & Hay, S. I. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Rosenberg, R. et al. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 67, 496–501 (2018).

    Article 

    Google Scholar 

  • 7.

    Hadfield, J. et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 15, e1008042 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    CDC. Saint Louis Encephalitis. https://www.cdc.gov/sle/index.html.

  • 10.

    Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, 7864 (2020).

    Article 

    Google Scholar 

  • 17.

    Medlock, J. M. et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect. Dis. 17, 140 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosq. Control Assoc. 14, 83–94 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Eastwood, G., Cunningham, A. A., Kramer, L. D. & Goodman, S. J. The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Med. Vet. Entomol. 33, 44–55 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Napp, S., Petrić, D. & Busquets, N. West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog. Glob. Health 112, 233–248 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Multini, L. C., de Souza, A. L., Marrelli, M. T. & Wilke, A. B. B. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Wilke, A. B. B., de Carvalho, G. C. & Marrelli, M. T. Microgeographic population structuring of Culex quinquefasciatus (Diptera: Culicidae) From São Paulo, Brazil. J. Med. Entomol. 54, 1582–1588 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Wilk-da-Silva, R., de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Dyar, G. & Knab, F. The larvae of Culicidae classified as independent organisms. J. N. Y. Entomol. Soc. 14, 169–230 (1906).

    Google Scholar 

  • 26.

    Laurito, M., Briscoe, A. G., Almirón, W. R. & Harbach, R. E. Systematics of the Culex coronator complex (Diptera: Culicidae): Morphological and molecular assessment. Zool. J. Linn. Soc. 182, 735–757 (2018).

    Article 

    Google Scholar 

  • 27.

    Demari-Silva, B. et al. Wing Morphometry and genetic variability between Culex coronator and Culex usquatus (Diptera: Culicidae), two sibling species of the coronator group. J. Med. Entomol. 54, 901–908 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Unlu, I., Kramer, W. L., Roy, A. F. & Foil, L. D. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana. J. Med. Entomol. 47, 625–633 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    CDC. Mosquito species in which West Nile virus has been detected. Centers for disease control and prevention. https://www.cdc.gov/westnile/resources/pdfs/Mosquito%20Species%201999-2012.pdf (2017).

  • 31.

    CDC Arbovirus Catalog. Centers for disease control and prevention. https://wwwn.cdc.gov/Arbocat/Default.aspx (2018).

  • 32.

    Scholte, E. J. et al. Introduction and control of three invasive mosquito species in the Netherlands, July–October 2010. Eurosurveillance 15, 1–4 (2010).

    Article 

    Google Scholar 

  • 33.

    Reiter, P. & Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Eritja, R, et al. Worldwide invasion of vector mosquitoes: Present European distribution and challenges for Spain. Issues in Bioinvasion Science 87–97 (Springer, 2005).

  • 35.

    Connelly, C. R., Alto, B. W. & O’Meara, G. F. The spread of Culex coronator (Diptera: Culicidae) throughout Florida. J. Vector Ecol. 41, 195–199 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Guedes, M. L. P. & Navarro-Silva, M. A. Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae). Rev. Bras. Entomol. 58, 88–94 (2014).

    Article 

    Google Scholar 

  • 39.

    Miami-Dade County. Homeless trust census results and comparison. https://www.homelesstrust.org/library/january-homeless-census-results-and-comparison-2018-2019.pdf (2019).

  • 40.

    Blosser, E. M. & Burkett-Cadena, N. D. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Blosser, E. M. & Burkett-Cadena, N. D. Oviposition strategies of Florida Culex (Melanoconion) mosquitoes. J. Med. Entomol. 54, 812–820 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    De Carvalho, G. C. et al. Composition and diversity of mosquitoes (Diptera: Culicidae) in urban parks in the South region of the city of São Paulo, Brazil. Biota Neotrop. 17, e20160274 (2017).

    Article 

    Google Scholar 

  • 44.

    Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding integrated vector management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    WHO. Handbook for Integrated Vector Management (World Health Organization, Geneva, 2012).

    Google Scholar 

  • 47.

    Pagac, B. B. et al. Incursion and establishment of the Old World arbovirus vector Aedes (Fredwardsius) vittatus (Bigot, 1861) in the Americas. Acta Trop. 213, 105739 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).

  • 49.

    Blackmore, C. G. M. et al. Surveillance results from the first West Nile virus transmission season in Florida, 2001. Am. J. Trop. Med. Hyg. 69, 141–150 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Florida Department of Health. http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)

  • 51.

    Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE 14, e0212688 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).

  • 53.

    Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability, Number 26. Boca Raton; Routledge. 176 pp. https://doi.org/10.1201/9781315140919.


  • Source: Ecology - nature.com

    Waging a two-pronged campaign against climate change

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design