in

All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish

  • 1.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar 

  • 2.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Lindeboom, H. The coastal zone: An ecosystem under pressure. In Oceans 2020: Science Trends and the Challenge of Sustainability (ed. Field, J. G.) 49–84 (Island Press, 2002).

    Google Scholar 

  • 5.

    Airoldi, L., Balata, D. & Beck, M. W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. Ecol. 366, 8–15 (2008).

    Article 

    Google Scholar 

  • 6.

    Islam, S. & Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 48, 624–649 (2004).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Vikas, M. & Dwarakish, G. S. Coastal pollution: A review. Aquat. Procedia 4, 381–388 (2015).

    Article 

    Google Scholar 

  • 8.

    Blaber, S. J. M. et al. Effects of fishing on the structure and functioning of estuarine and nearshore ecosystems. ICES J. Mar. Sci. 57, 590–602 (2000).

    Article 

    Google Scholar 

  • 9.

    Hussein, C. et al. Assessing the impact of artisanal and recreational fishing and protection on a white seabream (Diplodus sargus sargus) population in the north-western Mediterranean Sea using a simulation model. Part 1: Parameterization and simulations. Fish. Res. 108, 163–173 (2011).

    Article 

    Google Scholar 

  • 10.

    Hawkins, A. D. & Popper, A. N. A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES J. Mar. Sci. 74, 635–651 (2017).

    Article 

    Google Scholar 

  • 11.

    Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).

    Article 

    Google Scholar 

  • 12.

    Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Biol. Ecol. 146, 113–137 (1991).

    Article 

    Google Scholar 

  • 13.

    Sheaves, M., Baker, R. & Johnston, R. Marine nurseries and effective juvenile habitats: an alternative view. Mar. Ecol. Prog. Ser. 318, 303–306 (2006).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. https://doi.org/10.1016/S0065-2881(06)51002-8 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).

    Article 

    Google Scholar 

  • 16.

    Di Franco, A. et al. Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas. Biol. Conserv. 192, 361–368 (2015).

    Article 

    Google Scholar 

  • 17.

    Di Franco, A. et al. Assessing dispersal patterns of fish propagules from an effective Mediterranean marine protected area. PLoS ONE 7, e52108 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Di Franco, A. & Guidetti, P. Patterns of variability in early-life traits of fishes depend on spatial scale of analysis. Biol. Lett. 7, 454–456 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Dahlgren, C. P. & Eggleston, D. B. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81, 2227–2240 (2000).

    Article 

    Google Scholar 

  • 20.

    Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).

    Article 

    Google Scholar 

  • 21.

    Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: Concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).

    Article 

    Google Scholar 

  • 23.

    Jones, G. P. The importance of recruitment to the dynamics of a coral reef fish population. Ecology 71, 1691–1698 (1990).

    Article 

    Google Scholar 

  • 24.

    Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries Coasts 38, 401–414 (2015).

    Article 

    Google Scholar 

  • 25.

    Harmelin-Vivien, M. L., Harmelin, J. G. & Leboulleux, V. Microhabitat requirements for settlement of juvenile Sparid fishes on Mediterranean rocky shores. Hydrobiologia 301, 309–320 (1995).

    Article 

    Google Scholar 

  • 26.

    Garcia-Rubies, A. & Macpherson, E. Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean littoral. Mar. Biol. 124, 35–42 (1995).

    Article 

    Google Scholar 

  • 27.

    Vigliola, L. Contrôle et régulation du recrutement des Sparidés (Poissons, Téléostéens) en Méditerranée : importance des processus pré- et post-installation benthique. Thèse Doct Sci Univ Aix-Marseille II Marseille. (1998).

  • 28.

    Cheminée, A. Ecological Functions, Transformations and Management of Infralittoral Rocky Habitats from the North-Western Mediterranean: The Case of Fish (Teleostei) Nursery Habitats (University of Nice, 2012).

    Google Scholar 

  • 29.

    Macpherson, E. & Zika, U. Temporal and spatial variability of settlement success and recruitment level in three blennoid fishes in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 182, 269–282 (1999).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Heck, K., Hays, G. & Orth, R. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser. 253, 123–136 (2003).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, A. & García-Charton, J. A. Temporal patterns of settlement, recruitment and post-settlement losses in a rocky reef fish assemblage in the South-Western Mediterranean Sea. Mar. Biol. 160, 2337–2352 (2013).

    Article 

    Google Scholar 

  • 32.

    Cuadros, A. Settlement and Post-Settlement Processes of Mediterranean Littoral Fishes: Influence of Seascape Attributes and Environmental Conditions at Different Spatial Scales (Universidad de las Islas Baleares, 2015).

    Google Scholar 

  • 33.

    Bussotti, S. & Guidetti, P. Timing and habitat preferences for settlement of juvenile fishes in the marine protected area of torre guaceto (south-eastern Italy, Adriatic Sea). Ital. J. Zool. 78, 243–254 (2011).

    Article 

    Google Scholar 

  • 34.

    Bariche, M., Letourneur, Y. & Harmelin-Vivien, M. Temporal fluctuations and settlement patterns of native and lessepsian herbivorous fishes on the lebanese coast (Eastern Mediterranean). Environ. Biol. Fishes 70, 81–90 (2004).

    Article 

    Google Scholar 

  • 35.

    Mosconi, P. & Chauvet, C. Growth spatio-temporal variability of juveniles of sea-bream (Sparus aurata) between lagoonal and sea areas in the south of Lion’s Gulf. Vie Milieu Paris 40, 305–311 (1990).

    Google Scholar 

  • 36.

    Verdiell-Cubedo, D., Oliva-Paterna, F. J., Ruiz-Navarro, A. & Torralva, M. Assessing the nursery role for marine fish species in a hypersaline coastal lagoon (Mar Menor, Mediterranean Sea). Mar. Biol. Res. 9, 739–748 (2013).

    Article 

    Google Scholar 

  • 37.

    Letourneur, Y., Darnaude, A., Salen-Picard, C. & Harmelin-vivien, M. Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanol. Acta 24, 273–285 (2001).

    Article 

    Google Scholar 

  • 38.

    Le Pape, O. et al. Sources of organic matter for flatfish juveniles in coastal and estuarine nursery grounds: A meta-analysis for the common sole (Solea solea) in contrasted systems of Western Europe. J. Sea Res. 75, 85–95 (2013).

    Article 

    Google Scholar 

  • 39.

    Guidetti, P. & Bussotti, S. Recruitment of Diplodus annularis and Spondyliosoma cantharus (Sparidae) in shallow seagrass beds along the Italian coasts (Mediterranean Sea). Mar. Life 7, 47–52 (1997).

    Google Scholar 

  • 40.

    Guidetti, P. & Bussotti, S. Fish fauna of a mixed meadow composed by the seagrasses Cymodocea nodosa and Zostera noltii in the Western Mediterranean. Oceanol. Acta 23, 759–770 (2000).

    Article 

    Google Scholar 

  • 41.

    Guidetti, P. & Bussotti, S. Effects of seagrass canopy removal on fish in shallow Mediterranean seagrass (Cymodocea nodosa and Zostera noltii) meadows: a local-scale approach. Mar. Biol. 140, 445–453 (2002).

    Article 

    Google Scholar 

  • 42.

    Cuadros, A. et al. The three-dimensional structure of Cymodocea nodosa meadows shapes juvenile fish assemblages (Fornells Bay, Minorca Island). Reg. Stud. Mar. Sci. (2017).

  • 43.

    Francour, P. & Le Direac’h, L. Recrutement de l’ichtyofaune dans l’herbier superficiel à Posidonia oceanica de la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale): données préliminaires. Trav. Sci. Parc. Nat. Régional Corse 46, 71–91 (1994).

    Google Scholar 

  • 44.

    Francour, P. & Le Direac’h, L. Analyse spatiale du recrutement des poissons de l’herbier à Posidonia oceanica dans la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale). Contrat Parc Naturel Régional de la Corse & GIS Posidonie. LEML Publ Nice 1–23 (2001).

  • 45.

    Francour, P. & Le Direach, L. Le recrutement des poissons dans les herbiers à Posidonia oceanica : quels sont les facteurs influents ? in XXXIX AFL Congress 67–78 (1995).

  • 46.

    Le Direac’h, L. & Francour, P. Recrutement de Diplodus annularis (Sparidae) dans les herbiers de posidonie de la Réserve Naturelle de Scandola (Corse). Trav. Sci. Parc. Nat. Rég. Corse 57, 42–75 (1998).

    Google Scholar 

  • 47.

    Guidetti, P. Differences among fish assemblages associated with Nearshore Posidonia oceanica Seagrass Beds, Rocky–algal Reefs and unvegetated sand habitats in the Adriatic Sea. Estuar. Coast. Shelf Sci. 50, 515–529 (2000).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, Á. & García-Charton, J. A. Habitat use and ontogenetic shifts of fish life stages at rocky reefs in South-western Mediterranean Sea. J. Sea Res. 88, 67–77 (2014).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Félix-Hackradt, F. C. et al. Environmental determinants on fish post-larval distribution in coastal areas of south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 129, 59–72 (2013).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).

    Article 

    Google Scholar 

  • 51.

    Cheminée, A. et al. Juvenile fish assemblages in temperate rocky reefs are shaped by the presence of macro-algae canopy and its three-dimensional structure. Sci. Rep. 7, 14638 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Cuadros, A. et al. Juvenile fish in Cystoseira forests: Influence of habitat complexity and depth on fish behaviour and assemblage composition. Mediterr. Mar. Sci. 20, 380–392 (2019).

    Article 

    Google Scholar 

  • 53.

    Hinz, H., Reñones, O., Gouraguine, A., Johnson, A. F. & Moranta, J. Fish nursery value of algae habitats in temperate coastal reefs. PeerJ 7, e6797 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Thiriet, P. D. et al. Abundance and diversity of Crypto- and Necto-Benthic coastal fish are higher in marine forests than in structurally less complex macroalgal assemblages. PLoS ONE 11, e0164121 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Thiriet, P. Comparaison de la Structure des Peuplements de Poissons et des Processus Écologiques Sous-Jacents, Entre les Forêts de Cystoseires et des Habitats Structurellement Moins Complexes, dans l’Infralittoral Rocheux de Méditerranée Nord-Occidentale (University of Nice, 2014).

    Google Scholar 

  • 56.

    Cheminée, A. et al. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat. Mar. Pollut. Bull. 119, 245–254 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 57.

    Mercader, M. et al. Spatial distribution of juvenile fish along an artificialized seascape, insights from common coastal species in the Northwestern Mediterranean Sea. Mar. Environ. Res. 137, 60–72 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Tournois, J. et al. Lagoon nurseries make a major contribution to adult populations of a highly prized coastal fish. Limnol. Oceanogr. 62, 1219–1233 (2017).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Cuadros, A. et al. Settlement and post-settlement survival rates of the white seabream (Diplodus sargus) in the western Mediterranean Sea. PLoS ONE 13, e0190278 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Cheminée, A., Francour, P. & Harmelin-Vivien, M. Assessment of Diplodus spp. (Sparidae) nursery grounds along the rocky shore of Marseilles (France, NW Mediterranean). Sci. Mar. 75, 181–188 (2011).

    Article 

    Google Scholar 

  • 61.

    Pastor, J., Koeck, B., Astruch, P. & Lenfant, P. Coastal man-made habitats: Potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148, 74–80 (2013).

    Article 

    Google Scholar 

  • 62.

    Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol.-Prog. Ser. 168, 45–56 (1998).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Vigliola, L. & Harmelin-Vivien, M. Post-settlement ontogeny in three Mediterranean reef fish species of the Genus Diplodus. Bull. Mar. Sci. 68, 271–286 (2001).

    Google Scholar 

  • 64.

    Cuadros, A. et al. Seascape attributes, at different spatial scales, determine settlement and post-settlement of juvenile fish. Estuar. Coast. Shelf Sci. 185, 120–129 (2017).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Morat, F. et al. Diet of the Mediterranean european shag, Phalacrocorax aristotelis desmarestii, in a northwestern mediterranean area: a competitor for local fisheries?. Sci. Rep. Port. Cros. Natl. Park 28, 113–132 (2014).

    Google Scholar 

  • 66.

    Morat, F. et al. Offshore–onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean). Estuar. Coast. Shelf Sci. 149, 194–202 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 67.

    La Mesa, G., Louisy, P. & Vacchi, M. Assessment of microhabitat preferences in juvenile dusky grouper (Epinephelus marginatus) by visual sampling. Mar. Biol. 140, 175–185 (2002).

    Article 

    Google Scholar 

  • 68.

    Vacchi, M., La Mesa, G., Finoia, M. G., Guidetti, P. & Bussotti, S. Protection measures and juveniles of dusky grouper, Epinephelus marginatus (Lowe, 1834) (Pisces, Serranidae), in the Marine Reserve of Ustica Island (Italy, Mediterranean Sea). Mar. Life 9, 63–70 (1999).

    Google Scholar 

  • 69.

    Bodilis, P., Ganteaume, A. & Francour, P. Presence of 1 year-old dusky groupers along the French Mediterranean coast. J. Fish Biol. 62, 242–246 (2003).

    Article 

    Google Scholar 

  • 70.

    Bodilis, P., Ganteaume, A. & Francour, P. Recruitment of the dusky grouper (Epinephelus marginatus) in the north-western Mediterranean Sea. Cybium 27, 123–129 (2003).

    Google Scholar 

  • 71.

    Mercader, M. et al. Observation of juvenile dusky groupers (Epinephelus marginatus) in artificial habitats of North-Western Mediterranean harbors. Mar. Biodivers. 47, 371–372 (2016).

    Article 

    Google Scholar 

  • 72.

    Raventos, N. & Macpherson, E. Environmental influences on temporal patterns of settlement in two littoral labrid fishes in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 63, 479–487 (2005).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Macpherson, E. & Raventos, N. Settlement patterns and post-settlement survival in two Mediterranean littoral fishes: influences of early-life traits and environmental variables. Mar. Biol. 148, 167–177 (2005).

    Article 

    Google Scholar 

  • 75.

    Raventos, N. Effects of wave action on nesting activity in the littoral five-spotted wrasse, Symphodus roissali,(Labridae), in the northwestern Mediterranean Sea. Sci. Mar. 68, 257–264 (2004).

    Article 

    Google Scholar 

  • 76.

    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Biagi, F., Gambaccini, S. & Zazzetta, M. Settlement and recruitment in fishes: The role of coastal areas. Ital. J. Zool. 65, 269–274 (1998).

    Article 

    Google Scholar 

  • 78.

    Franco, A. et al. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 66, 67–83 (2006).

    ADS 
    Article 

    Google Scholar 

  • 79.

    Harmelin-Vivien, M. L. et al. Évaluation visuelle des peuplements et populations de Poissons: Méthodes et problèmes. Rev. Ecol. Terre Vie 40, 467–539 (1985).

    Google Scholar 

  • 80.

    Faillettaz, R. et al. Spatio-temporal patterns of larval fish settlement in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 650, 153–173 (2020).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Le Direach, L. et al. Programme NUhAGE : Nurseries, habitats, génie écologique, Rapport final. Contrat GIS Posidonie: MIO: P2A développement/Agence de l’Eau Rhône-Méditerranée-Corse-Conseil Général du Var. 1–146 (2015).

  • 82.

    Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Ballesteros, E. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. (1992).

  • 84.

    Medrano, A. et al. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci. Rep. 10, 19219 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. (Primer-E Ltd, 2001).

  • 86.

    Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial-Primer-E Ltd. (2006).

  • 87.

    Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: guide to software and statistical methods. (Primer-e, 2008).

  • 88.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).

  • 89.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • 90.

    August, P. V. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507 (1983).

    Article 

    Google Scholar 

  • 91.

    Wedding, L. M., Lepczyk, C. A., Pittman, S. J., Friedlander, A. M. & Jorgensen, S. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm. Mar. Ecol. Prog. Ser. 427, 219–223 (2011).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Thiriet, P., Cheminée, A., Mangialajo, L. & Francour, P. How 3D complexity of macrophyte-formed habitats affect the processes structuring fish assemblages within coastal temperate seascapes? in Underwater Seascapes (eds. Musard, O. et al.) 185–199 (Springer, 2014).

  • 93.

    Cheminée, A., Merigot, B., Vanderklift, M. A. & Francour, P. Does habitat complexity influence fish recruitment?. Mediterr. Mar. Sci. 17, 39–46 (2016).

    Article 

    Google Scholar 

  • 94.

    Mercader, M. et al. Is artificial habitat diversity a key to restoring nurseries for juvenile coastal fish? Ex situ experiments on habitat selection and survival of juvenile seabreams. Restor. Ecol. 27, 1155–1165 (2019).

    Article 

    Google Scholar 

  • 95.

    Winemiller, K. O. & Leslie, M. A. Fish assemblages across a complex, tropical freshwater/marine ecotone. Environ. Biol. Fishes 34, 29–50 (1992).

    Article 

    Google Scholar 

  • 96.

    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Adams, A. J. et al. Nursery function of tropical back-reef systems. Mar. Ecol. Prog. Ser. 318, 287–301 (2006).

    ADS 
    Article 

    Google Scholar 

  • 98.

    Vigliola, L., Harmelin-Vivien, M. & Meekan, M. G. Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can. J. Fish. Aquat. Sci. 57, 1291–1299 (2000).

    Article 

    Google Scholar 

  • 99.

    Ventura, D., Lasinio, G. J. & Ardizzone, G. Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar. Ecol. 36, 1013–1032 (2015).

    ADS 
    Article 

    Google Scholar 

  • 100.

    Thibaut, T., Blanfune, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).

    Article 

    Google Scholar 

  • 101.

    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Thibaut, T. et al. Unexpected temporal stability of cystoseira and sargassum forests in port-cros, one of the Oldest Mediterranean Marine National Parks. Cryptogam. Algol. 37, 61–90 (2016).

    Article 

    Google Scholar 

  • 103.

    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).

    ADS 
    Article 

    Google Scholar 

  • 104.

    Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 105.

    Sala, E., Boudouresque, C. F. & Harmelin-Vivien, M. Fishing, trophic cascades, and the structure of algal assemblages: Evaluation of an old but untested paradigm. Oikos 82, 425–439 (1998).

    Article 

    Google Scholar 

  • 106.

    Sala, E., Kizilkaya, Z., Yildirim, D. & Ballesteros, E. Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE 6, e17356 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Planes, S. et al. Spatio-temporal variability in growth of juvenile sparid fishes from the Mediterranean littoral zone. J. Mar. Biol. Assoc. UK 79, 137–143 (1999).

    Article 

    Google Scholar 

  • 108.

    Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).

    ADS 
    Article 

    Google Scholar 

  • 109.

    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).

    CAS 
    Article 

    Google Scholar 

  • 110.

    Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).

    Article 

    Google Scholar 

  • 112.

    Colloca, F. et al. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10, e0119590 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 113.

    Cheminée, A., Feunteun, E., Clerici, S., Bertrand, C. & Francour, P. Management of infralittoral habitats: towards a seascape scale approach. in Underwater Seascapes: From geographical to ecological perspectives (eds. Musard, O., Francour, P. & Feunteun, E.) 240 (Springer, 2014).

  • 114.

    Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. Ecol. Connect. Trop. Coast. Ecosyst. 1, 493–530 (2009).

    Google Scholar 

  • 115.

    Meinesz, A., Lefevre, J. R. & Astier, J. M. Impact of coastal development on the infralittoral zone along the southeastern Mediterranean shore of continental France. Mar. Pollut. Bull. 23, 343–347 (1991).

    Article 

    Google Scholar 

  • 116.

    Boudouresque, C. F. et al. The Management of Mediterranean Coastal Habitats: A Plea for a Socio-ecosystem-Based Approach. in Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes (eds. Ceccaldi, H.-J. et al.) 297–320 (Springer, 2020).

  • 117.

    Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).

    Article 

    Google Scholar 

  • 118.

    Boudouresque, C. F. et al. Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC. (SPA publisher, 2012).

  • 119.

    Sartoretto, S. et al. An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach. Mar. Pollut. Bull. 120, 222–231 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 120.

    Meinesz, A. & Blanfuné, A. 1983–2013: Development of marine protected areas along the French Mediterranean coasts and perspectives for achievement of the Aichi target. Mar. Policy 54, 10–16 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Waging a two-pronged campaign against climate change

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design