Briskin, D. P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 124, 507–514. https://doi.org/10.1104/pp.124.2.507 (2000).
Google Scholar
Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16, 28–37. https://doi.org/10.3346/jkms.2001.16.S.S28 (2001).
Google Scholar
Yuan, H. D. et al. Ginseng and diabetes: The evidences from in vitro, animal and human studies. J. Ginseng Res. 36, 27–39. https://doi.org/10.5142/jgr.2012.36.1.27 (2012).
Google Scholar
Li, C. et al. Research and implementation of good agricultural practice for traditional Chinese medicinal materials in Jilin Province, China. J. Ginseng Res. 38, 227–232. https://doi.org/10.1016/j.jgr.2014.05.007 (2014).
Google Scholar
Liu, M., Li, S., Xing, Y. & Ma, F. Identification of ginseng rust Rot fungus. J. Plant Pathol. 3, 183–185. https://doi.org/10.13926/j.cnki.apps.1984.03.012 (1984).
Google Scholar
Liu, Z., Chen, X. & Han, Y. Research on Ginseng rust rot pathogen under natural overwintering conditions. Northern Horticult. 3, 160–163. https://doi.org/10.11937/bfyy.201703037 (2017).
Google Scholar
Wang, Q. et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil. Ecol. 138, 245–252. https://doi.org/10.1016/j.apsoil.2019.03.012 (2019).
Google Scholar
Rafael, L.-C., Juan Arturo, R.-S. & Montserrat, C.-S. Microencapsulation of Meyerozyma guilliermondii by spray drying using sodium alginate and soy protein isolate as wall materials: A biocontrol formulation for anthracnose disease of mango. Biocontrol Sci. Technol. 30, 1116–1132. https://doi.org/10.1080/09583157.2020.1793910 (2020).
Google Scholar
Moparthi, S. & Bradshaw, M. Fungicide efficacy trials for the control of powdery mildew (Podosphaera cerasi) on sweet cherry trees (Prunus avium). Biocontrol Sci. Tech. 30, 659–670. https://doi.org/10.1080/09583157.2020.1755616 (2020).
Google Scholar
Zhou, C. Y. et al. Identification and optimization of fermentation conditions of antagonistic endophytic fungi in a single plant of Panax ginseng. Henan Agricult. Sci. 49, 104–110. https://doi.org/10.15933/j.cnki.1004-3268.2020.02.013 (2020).
Google Scholar
Sun, Z. et al. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol. Control 138, 104048. https://doi.org/10.1016/j.biocontrol.2019.104048 (2019).
Google Scholar
Kambo, H. S. & Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050 (2015).
Google Scholar
Lehmann, J., Gaunt, J. & Rondon, M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change 11, 403–427. https://doi.org/10.1007/s11027-005-9006-5 (2006).
Google Scholar
Uzoma, K. C. et al. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. https://doi.org/10.1111/j.1475-2743.2011.00340.x (2011).
Google Scholar
Baiamonte, G. et al. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0960-y (2015).
Google Scholar
Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 5, 381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 (2007).
Google Scholar
Ding, Y., Liu, J. & Wang, Y. Effects of biochar on soil microbial ecology. Chin. J. Appl. Ecol. 24, 3311–3317 (2013).
Google Scholar
Solaiman, Z. M. et al. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 48, 546–554. https://doi.org/10.1071/SR10002 (2010).
Google Scholar
Zheng, J. et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total Environ. 571, 206–217. https://doi.org/10.1016/j.scitotenv.2016.07.135 (2016).
Google Scholar
Gul, S. et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agr. Ecosyst. Environ. 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015 (2015).
Google Scholar
Zhang, W. et al. Utilization potential, industrial model and development strategy of straw biochar in Northeast China. Sci. Agric. Sin. 52, 2406–2424. https://doi.org/10.3864/j.issn.0578-1752.2019.14.003 (2019).
Google Scholar
Mao, H. et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresour. Technol. 258, 195–202. https://doi.org/10.1016/j.biortech.2018.02.082 (2018).
Google Scholar
Yumin, D. et al. Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2019.02.026 (2019).
Google Scholar
Ghodhbane-Gtari, F. et al. Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod-) Ineffective (Fix-) Isolate from Coriaria nepalensis. Genome Announc. 1, e0008513. https://doi.org/10.1128/genomeA.00085-13 (2013).
Google Scholar
Jung-Tai, L. & Sung-Ming, T. The nitrogen-fixing Frankia significantly increases growth, uprooting resistance and root tensile strength of Alnus formosana. Afr. J. Biotech. 17, 213–225. https://doi.org/10.5897/AJB2017.16289 (2018).
Google Scholar
Du, D., Yuan, F., Li, R., Wang, Y. & Cui, G. A study on the classification and identification of a Frankia strain. Acta Microbiol. Sin. 25, 197–203. https://doi.org/10.13343/j.cnki.wsxb.1985.03.003 (1985).
Google Scholar
Kang, L. et al. Field study on inoculation of Casuarina casuarina with Franklinella calcium alginate. Forest Res. 01, 42–46. https://doi.org/10.13275/j.cnki.lykxyj.2000.01.006 (2000).
Google Scholar
Larkin, R. P. Characterization of soil microbial communi- ties under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35, 1451–1466. https://doi.org/10.1016/S0038-0717(03)00240-2 (2003).
Google Scholar
Shi, L. et al. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci. Rep. 7, 41234. https://doi.org/10.1038/srep41234 (2017).
Google Scholar
Shen, Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils 51, 1–10. https://doi.org/10.1007/s00374-015-1002-7 (2015).
Google Scholar
Atandi, J. G. et al. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agricult. Ecosyst. Environ. 247, 265–272. https://doi.org/10.1016/j.agee.2017.07.002 (2017).
Google Scholar
Wang, T., Qiao, W., Li, Y. & Ao, Y. Effects of crop rotation and microbial fertilizer on soil physical and chemical properties and biological activity of cucumber continuous cropping. Chin. J. Soil Sci. 42, 578–583. https://doi.org/10.19336/j.cnki.trtb.2011.03.013 (2011).
Google Scholar
Daquan, S. J. et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0996-z (2015).
Google Scholar
Warnock, D. D. et al. Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300, 9–20. https://doi.org/10.1007/s11104-007-9391-5 (2007).
Google Scholar
Luo, Y., Tian, G., Zhang, D., Hao, R. & Wang, C. Effects of microbial agents on soil nutrients and nitrate nitrogen accumulation in terracotta greenhouse. Chin. Agric. Sci. Bull. 31, 224–228 (2015).
Yin, S. et al. Effects of complex ecological microbial agents on the number and enzyme activity of cucumber rhizosphere soil. Chin. J. Microbiol. 32, 23–27. https://doi.org/10.3969/j.issn.1005-7021.2012.01.005 (2012).
Google Scholar
Dedysh, S. N., Ricke, P. & Liesack, W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150, 1301. https://doi.org/10.1016/j.jcp.2003.11.016 (2004).
Google Scholar
Michael, P. C., Madigan, T., Martinko, J. M. & Parker, J. Getting the bug for microorganisms. In Brock biology of microorganisms, 8th edn. 375–376 https://doi.org/10.1016/s0962-8924(97)83479-4 (Prentice Hall, 1997).
Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. https://doi.org/10.1155/2014/437684 (2014).
Google Scholar
Zhao, Y. et al. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Can. J. Microbiol. 62, 1. https://doi.org/10.1139/cjm-2015-0448 (2015).
Google Scholar
Jin, Xu., Wang, R., Deng, F., Cao, G. & Wang, G. Effects of biochar application on soil physical and chemical properties and enzyme activities of poplar plantation in Dongtai coastal area. J. Fujian Agric. For. Univ. 49, 348–353. https://doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2020.03.010 (2020).
Google Scholar
Lehmann, J. et al. Biochar effects on soil biota—A review. Soil Biol. Biochem. 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 (2011).
Google Scholar
Nugroho, S. G. et al. Three-year measurement of methane emission from an Indonesian paddy field. Plant Soil 181, 287–293. https://doi.org/10.1007/BF00012063 (1996).
Google Scholar
Sauze, J. et al. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange. Soil Biol. Biochem. 115, 371–382. https://doi.org/10.1016/j.soilbio.2017.09.009 (2017).
Google Scholar
Long, J., Liao, H., Li, J. & Chen, C. Research on the relationship between soil and rocky desertification in typical karst mountain area based on redundancy analysis. Environ. Sci. 33, 2131–2138 (2012).
Zeng, J. et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of tianshan mountain, China. Front. Microbiol. 7, 1353. https://doi.org/10.3389/fmicb.2016.01353 (2016).
Google Scholar
Sui, Y. et al. Study on the relationship between soil organic matter content and soil microbial biomass and soil enzyme activity. Chin. J. Soil Sci. 40, 1036–1039 (2009).
Google Scholar
Jiao, X., Gao, C., Sui, Y., Zhang, X. & Ding, G. Sci. Agric. Sin. 44, 3759–3767. https://doi.org/10.3864/j.issn.0578-1752.2011.18.007 (2011).
Google Scholar
Yao, L., Cheng, G., Wang, L., Chen, H. & Lou, L. Effects of biochar application on soil microorganisms. Environ. Chem. 34, 697–704. https://doi.org/10.7524/j.issn.0254-6108.2015.04.2014072802 (2015).
Google Scholar
Rui, J. et al. Effects of biochar on soil properties, cadmium uptake and physiological characteristics of Chinese cabbage. J. Southern Agric. 47, 1480–1487. https://doi.org/10.3969/jissn.2095-1191.2016.09.1480 (2016).
Google Scholar
Zheng, H., Honghui, Wu., Wengi, B., Ye, J. & Zeng, Y. Soil Fertil. Sci. 2, 68–74. https://doi.org/10.11838/sfsc.1673-6257.18244 (2019).
Google Scholar
Shan, W., Li, J. & Liu, M. Inhibition of Verticillium wilt in cotton by filter paper method. Chin. Agric. Sci. Bull. 26, 285–289. https://doi.org/10.3969/j.issn.1000-632X.2010.08.007 (2010).
Google Scholar
Kızılkaya, R., Aşkın, T., Bayraklı, B. & Sağlam, M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 40, 95–102. https://doi.org/10.1016/j.ejsobi.2004.10.002 (2004).
Google Scholar
Lee, S. H. et al. Degradation characteristics of waste lubricants under different nutrient conditions. J. Hazard. Mater. 143, 65–72. https://doi.org/10.1016/J.JHAZMAT.2006.08.059 (2007).
Google Scholar
Zhang, Y. M. Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl. Soil. Ecol. 30, 215–225. https://doi.org/10.1016/J.APSOIL.2005.01.005 (2005).
Google Scholar
Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145. https://doi.org/10.1093/nar/gkn879 (2009).
Google Scholar
Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264. https://doi.org/10.1128/AEM.01821-12 (2012).
Google Scholar
Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104. https://doi.org/10.1007/s00248-013-0238-8 (2013).
Google Scholar
Jami, E. et al. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7, 1069–1079. https://doi.org/10.1038/ismej.2013.2 (2013).
Google Scholar
Nicola, S. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).
Google Scholar
Source: Ecology - nature.com