in

Changes in climate drive recent monarch butterfly dynamics

  • 1.

    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).

    Google Scholar 

  • 8.

    Brower, L. P. et al. Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv. Divers. 5, 95–100 (2012).

    Google Scholar 

  • 9.

    Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214, 343–346 (2017).

    Google Scholar 

  • 11.

    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Boyle, J. H., Dalgleish, H. J. & Puzey, J. R. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. Proc. Natl Acad. Sci. USA 116, 3006–3011 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Hann, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).

    Google Scholar 

  • 14.

    Oberhauser, K. S. et al. Temporal and spatial overlap between monarch larvae and corn pollen. Proc. Natl Acad. Sci. USA 98, 11913–11918 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).

    Google Scholar 

  • 16.

    Ries, L., Taron, D. J. & Rendón-Salinas, E. The disconnect between summer and winter monarch trends for the eastern migratory population: possible links to differing drivers. Ann. Entomol. Soc. Am. 108, 691–699 (2015).

    Google Scholar 

  • 17.

    Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).

    Google Scholar 

  • 18.

    Saunders, S. P. et al. Multiscale seasonal factors drive the size of winter monarch colonies. Proc. Natl Acad. Sci. USA 116, 8609–8614 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Zalucki, M. P. Temperature and rate of development in Danaus plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). Aust. J. Entomol. 21, 241–246 (1982).

    Google Scholar 

  • 20.

    Zipkin, E. F., Ries, L., Reeves, R., Regetz, J. & Oberhauser, K. S. Tracking climate impacts on the migratory monarch butterfly. Glob. Change Biol. 18, 3039–3049 (2012).

    Google Scholar 

  • 21.

    Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies. Ecography 41, 278–290 (2018).

    Google Scholar 

  • 22.

    Batalden, R. V., Oberhauser, K. & Peterson, A. T. Ecological niches in sequential generations of eastern North American monarch butterflies: the ecology of migration and likely climate change implications. Environ. Entomol. 36, 1365–1373 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs via range expansion of Asclepias host plants. PLoS ONE 10, e0118614 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Vidal, O. & Rendón-Salinas, E. Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol. Conserv. 180, 165–175 (2014).

    Google Scholar 

  • 25.

    Thogmartin, W. E. et al. Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5, e3221 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Flockhart, D. T. T., Pichancourt, J.-B., Norris, D. R. & Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155–165 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Oberhauser, K. et al. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42, 51–60 (2017).

    Google Scholar 

  • 28.

    Wilcox, A. A. E., Flockhart, D. T. T., Newman, A. E. M. & Norris, D. R. An evaluation of studies on the potential threats contributing to the decline of eastern migratory North American monarch butterflies (Danaus plexippus). Front. Ecol. Evol. 7, 99 (2019).

    Google Scholar 

  • 29.

    Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).

    Google Scholar 

  • 30.

    Dai, S., Shulski, M. D., Hubbard, K. G. & Takle, E. S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Climatol. 36, 517–525 (2016).

    Google Scholar 

  • 31.

    Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Crimmins, T. M. & Crimmins, M. A. Biologically-relevant trends in springtime temperatures across the United States. Geophys. Res. Lett. 46, 12377–12387 (2019).

    Google Scholar 

  • 33.

    Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2001).

    Google Scholar 

  • 34.

    Nelson, W. A., Bjørnstad, O. N. & Yamanaka, T. Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341, 796–799 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 36.

    Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6340 (2008).

    Google Scholar 

  • 38.

    Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Wagner, D. L. Insect declines in the Anthropocene. Ann. Rev. Entomol. 65, 457–480 (2020).

    CAS 

    Google Scholar 

  • 40.

    Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Flockhart, D. T. T. et al. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. Glob. Change Biol. 23, 2565–2576 (2017).

    Google Scholar 

  • 43.

    Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Oberhauser, K. S. et al. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 13–30 (Cornell Univ. Press, 2015).

  • 45.

    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).

    Google Scholar 

  • 46.

    Saunders, S. P., Ries, L., Obserhauser, K. S. & Zipkin, E. F. Evaluating confidence in climate-based predictions of population change in a migratory species. Glob. Ecol. Biogeogr. 25, 1000–1012 (2016).

    Google Scholar 

  • 47.

    Missrie, M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 141–150 (Cornell Univ. Press, 2004).

  • 48.

    García-Serrano, E., Reyes, J. L. & Alvarez, B. X. M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 129–133 (Cornell Univ. Press, 2004).

  • 49.

    Ramírez, M. I., Sáenz-Romero, C., Rehfeldt, G. & Salas-Canela, L. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 157–168 (Cornell Univ. Press, 2015).

  • 50.

    Howard, E. & Davis, A. K. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann. Entomol. Soc. Am. 108, 664–669 (2015).

    Google Scholar 

  • 51.

    McMaster, G. S. & Wilhelm, W. Growing degree-days: one equation, two interpretations. Agric. Meteorol. 87, 291–300 (1997).

    Google Scholar 

  • 52.

    Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1328

  • 53.

    Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).

    Google Scholar 

  • 54.

    Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).

    Google Scholar 

  • 55.

    Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).

    Google Scholar 

  • 56.

    Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Pesticide National Synthesis Project (US Geological Survey, 2020); https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/

  • 59.

    Quick Stats (US Department of Agriculture, National Agricultural Statistics Service, 2020); http://quickstats.nass.usda.gov

  • 60.

    Crops (Ontario Ministry of Agriculture, Food and Rural Affairs, 2020); http://www.omafra.gov.on.ca/english/crops/

  • 61.

    Batalden, R. V. & Oberhauser, K. S. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 215–224 (Cornell Univ. Press, 2015).

  • 62.

    Alonso-Mejía, A., Rendón-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol. Appl. 7, 934–947 (1997).

    Google Scholar 

  • 63.

    Brower, L. P., Fink, L. S. & Walford, P. Fueling the fall migration of the monarch butterfly. Integr. Comp. Biol. 46, 1123–1142 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Tracy, J. L., Kantola, T., Baum, K. A. & Coulson, R. N. Modeling fall migration pathways and spatially identifying potential migratory hazards for the eastern monarch butterfly. Landsc. Ecol. 34, 443–458 (2019).

    Google Scholar 

  • 65.

    Feldman, R. E. & McGill, B. J. How important is nectar in shaping spatial variation in the abundance of temperate breeding hummingbirds? J. Biogeogr. 41, 489–500 (2014).

    Google Scholar 

  • 66.

    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD13Q1.006

  • 67.

    Vidal, O., López-García, J. & Rendón-Salinas, E. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 28, 177–186 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Williams, E. H. & Brower, L. P. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 109–116 (Cornell Univ. Press, 2015).

  • 69.

    Brower, L. P. et al. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 151–166 (Cornell Univ. Press, 2004).

  • 70.

    Brower, L. P. et al. Butterfly mortality and salvage logging from the March 2016 storm in the Monarch Butterfly Biosphere Reserve in Mexico. Am. Entom. 63, 151–164 (2017).

    Google Scholar 

  • 71.

    Farfán-Gutiérrez, M. et al. Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera y Bosques 24, e2431591 (2018).

    Google Scholar 

  • 72.

    Ramírez, M. I., López-Sánchez, J. G. & Barrasa, S. Mapa de Vegetación y Cubiertas del Suelo, Reserva de la Biosfera Mariposa Monarca Vol. II (CIGA-UNAM, 2019).

  • 73.

    Flores-Martínez, J. J. et al. Recent forest cover loss in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico. Front. Ecol. Evol. 7, 167 (2019).

    Google Scholar 

  • 74.

    Ramírez, M. I., Gímenez-Azcárate, J. & Luna, L. Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For. Chron. 79, 242–246 (2003).

    Google Scholar 

  • 75.

    Ramírez, M. I., Miranda, R., Zubieta, R. & Jiménez, M. Land cover and road network map for the Monarch Butterfly Biosphere Reserve in Mexico 2003. J. Maps 3, 181–190 (2007).

    Google Scholar 

  • 76.

    Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Ltd, 2016).

  • 77.

    Yackulic, C. B., Dodrill, M., Dzul, M., Sanderlin, J. S. & Reid, J. A. A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. Ecol. Appl. 30, e02112 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Austral Ecol. 21, 224–228 (1996).

    Google Scholar 

  • 80.

    Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307–309 (2019).

    Google Scholar 

  • 81.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017).

    Google Scholar 

  • 82.

    Stan Development Team. rstan: the R Interface to Stan. R package version 2.17.3 http://mc-stan.org/ (2018).

  • 83.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/

  • 84.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Google Scholar 

  • 85.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).


  • Source: Ecology - nature.com

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design

    Push to make supply chains more sustainable continues to gain momentum