in

Social familiarity improves fast-start escape performance in schooling fish

  • 1.

    Ward, A. J. W. & Hart, P. J. B. The effects of kin and familiarity on interactions between fish. Fish Fish 4, 348–358 (2003).

    Article 

    Google Scholar 

  • 2.

    Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, 2016).

  • 3.

    Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).

  • 4.

    Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201–208 (2017).

    Article 

    Google Scholar 

  • 5.

    Seppä, T., Laurila, A., Peuhkuri, N., Piironen, J. & Lower, N. Early familiarity has fitness consequences for Arctic char (Salvelinus alpinus) juveniles. Can. J. Fish. Aquat. Sci. 58, 1380–1385 (2001).

    Article 

    Google Scholar 

  • 6.

    Oesch, N. & Dunbar, R. I. M. Group size, communication, and familiarity effects in foraging human teams. Ethology 124, 483–495 (2018).

    Article 

    Google Scholar 

  • 7.

    Edenbrow, M. & Croft, D. P. Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish. Biol. 80, 503–518 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Kavaliers, M. & Choleris, E. Out-Group threat responses, in-group bias, and nonapeptide involvement are conserved across vertebrates: (A comment on Bruintjes et al., “out-group threat promotes within-group affiliation in a cooperative fish”). Am. Nat. 189, 453–458 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    McCarter, M. W. & Sheremeta, R. M. You can’t put old wine in new bottles: the effect of newcomers on coordination in groups. PLoS ONE 8, e55058 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Silk, J. B. in Sociality, Hierarchy, Health: Comparative Biodemography (eds Weinstein, M. & Lane, M. A.) 121–144 (National Academies Press, 2014).

  • 11.

    Thompson, A. B. & Hare, J. F. Neighbourhood watch: multiple alarm callers communicate directional predator movement in Richardson’s ground squirrels, Spermophilus richardsonii. Anim. Behav. 80, 269–275 (2010).

    Article 

    Google Scholar 

  • 12.

    Micheletta, J. et al. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra. Proc. R. Soc. Lond. B Biol. Sci. 279, 4042–4050 (2012).

    Google Scholar 

  • 13.

    Strodl, M. & Schausberger, P. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation. PLoS ONE 7, e43590 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Versace, E., Damini, S., Caffini, M. & Stancher, G. Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Anim. Behav. 138, 187–192 (2018).

    Article 

    Google Scholar 

  • 15.

    Strodl, M. A. & Schausberger, P. Social familiarity modulates group living and foraging behaviour of juvenile predatory mites. Die Naturwissenschaften 99, 303–311 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Gutmann, A. K., Špinka, M. & Winckler, C. Long-term familiarity creates preferred social partners in dairy cows. Appl. Anim. Behav. Sci. 169, 1–8 (2015).

    Article 

    Google Scholar 

  • 17.

    Engelmann, J. M. & Herrmann, E. Chimpanzees trust their friends. Curr. Biol. 26, 252–256 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Ward, A. J. W., Axford, S. & Krause, J. Mixed-species shoaling in fish: The sensory mechanisms and costs of shoal choice. Behav. Ecol. Sociobiol. 52, 182–187 (2002).

    Article 

    Google Scholar 

  • 19.

    Vickruck, J. L. & Richards, M. H. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behav. Proc. 145, 73–80 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).

    Article 

    Google Scholar 

  • 21.

    Domenici, P. & Blake, R. W. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Eaton, R. C., Lavender, W. A. & Wieland, C. M. Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology. J. Comp. Phys. A 144, 521–531 (1981).

    Article 

    Google Scholar 

  • 23.

    Gerlotto, F., Bertrand, S., Bez, N. & Gutierrez, M. Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J. Mar. Sci. 63, 1405–1417 (2006).

    Article 

    Google Scholar 

  • 24.

    Domenici, P. & Batty, R. S. Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 128, 29–38 (1997).

    Article 

    Google Scholar 

  • 25.

    Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Korn, H. & Faber, D. S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13–28 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Domenici, P. & Hale, M. E. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J. Exp. Biol. 222, jeb166009 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Kohashi, T. & Oda, Y. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28, 10641–10653 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Hecker, A., Schulze, W., Oster, J., Richter, D. O. & Schuster, S. Removing a single neuron in a vertebrate brain forever abolishes an essential behavior. Proc. Natl Acad. Sci. USA 117, 3254–3260 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808–815 (2005).

    Article 

    Google Scholar 

  • 31.

    McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).

    Article 

    Google Scholar 

  • 32.

    Chivers, D. P., Brown, G. E. & Smith, J. F. R. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behavior. Can. J. Zool. 73, 955–960 (1995).

    Article 

    Google Scholar 

  • 33.

    Griffiths, S. W., Brockmark, S., Hojesjo, J. & Johnsson, J. I. Coping with divided attention: the advantage of familiarity. Proc. R. Soc. B Biol. Sci. 271, 695–699 (2004).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Clément, R. J. G., Wolf, M., Snijders, L., Krause, J. & Kurvers, R. H. J. M. Information transmission via movement behaviour improves decision accuracy in human groups. Anim. Behav. 105, 85–93 (2015).

    Article 

    Google Scholar 

  • 35.

    Beauchamp, G. & Ruxton, G. D. False alarms and the evolution of antipredator vigilance. Anim. Behav. 74, 1199–1206 (2007).

    Article 

    Google Scholar 

  • 36.

    Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180378 (2019).

    Article 

    Google Scholar 

  • 37.

    Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl Acad. Sci. USA 116, 20556–20561 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Bohorquez-Herrera, J., Kawano, S. M. & Domenici, P. Foraging behavior delays mechanically-stimulated escape responses in fish. Integr. Comp. Biol. 53, 780–786 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Furtbauer, I. & Heistermann, M. Cortisol coregulation in fish. Sci. Rep. 6, 30334 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    DeVries, A. C., Glasper, E. R. & Detillion, C. E. Social modulation of stress responses. Phys. Behav. 79, 399–407 (2003).

    CAS 
    Article 

    Google Scholar 

  • 41.

    McEwen, B. S. Brain on stress: How the social environment gets under the skin. Proc. Natl Acad. Sci. USA 109, 17180–17185 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Furukawa, T. & Furshpan, E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophys. 26, 140–176 (1963).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Pratchett, M. S., Coker, D. J., Jones, G. P. & Munday, P. L. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol. Evol. 2, 2168–2180 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Nadler, L. E., McNeill, D. C., Alwany, M. A. & Bailey, D. M. Effect of habitat characteristics on the distribution and abundance of damselfish within a Red Sea reef. Environ. Biol. Fishes 97, 1265–1277 (2014).

    Article 

    Google Scholar 

  • 45.

    Ohman, M. C., Munday, P. L., Jones, G. P. & Caley, M. J. Settlement strategies and distribution patterns of coral-reef fishes. J. Exp. Mar. Biol. Ecol. 225, 219–238 (1998).

    Article 

    Google Scholar 

  • 46.

    Killen, S. S., Marras, S., Nadler, L. & Domenici, P. The role of physiological traits in assortment among and within fish shoals. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160233 (2017).

  • 47.

    Lassig, B. R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 9, 55–63 (1983).

    Article 

    Google Scholar 

  • 48.

    Yoon, J.-D., Jang, M.-H. & Joo, G.-J. Effect of flooding on fish assemblages in small streams in South Korea. Limnol 12, 197–203 (2011).

    Article 

    Google Scholar 

  • 49.

    Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150084 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Johansen, J. L. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia. PLoS ONE 9, e83240 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Griffiths, S. W. & Magurran, A. E. Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945–949 (1997).

    Article 

    Google Scholar 

  • 52.

    Eaton, R. & Emberley, D. How stimulus direction determines the trajectory of the mauthner-initiated escape response in a teleost fish. J. Exp. Biol. 161, 469–487 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Domenici, P. et al. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale. Biol. Open 4, 79–85 (2015).

    Article 

    Google Scholar 

  • 54.

    Nadler, L. E., Killen, S. S., Domenici, P. & McCormick, M. I. Role of water flow regime in the swimming behaviour and escape performance of a schooling fish. Biol. Open 7, bio031997 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Nissanov, J. & Eaton, R. C. Reticulospinal control of rapid escape turning maneuvers in fishes. Am. Zool. 29, 103–121 (1989).

    Article 

    Google Scholar 

  • 56.

    Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adap. Behav. 20, 44–56 (2012).

    Article 

    Google Scholar 

  • 57.

    Vila Pouca, C. & Brown, C. Contemporary topics in fish cognition and behaviour. Curr. Opin. Behav. Sci. 16, 46–52 (2017).

    Article 

    Google Scholar 

  • 58.

    Eaton, R., Lee, R. & Foreman, M. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63, 467–485 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Nakayama, H. & Oda, Y. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    DiDomenico, R., Nissanov, J. & Eaton, R. C. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res. 473, 15–28 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Medan, V. & Preuss, T. The Mauthner-cell circuit of fish as a model system for startle plasticity. J. Physiol. Paris 108, 129–140 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Dukas, R. Behavioural and ecological consequences of limited attention. Philos. Trans. R. Soc. B. Biol. Sci. 357, 1539–1547 (2002).

    Article 

    Google Scholar 

  • 63.

    Yue, S., Duncan, I. J. H. & Moccia, R. D. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environ. Biol. Fishes 76, 425–431 (2006).

    Article 

    Google Scholar 

  • 64.

    Korn, H., Triller, A. & Faber, D. S. Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell. Proc. R. Soc. B Biol. Sci. 202, 533–538 (1978).

    CAS 

    Google Scholar 

  • 65.

    Whitaker, K. W. et al. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J. Neurophys. 106, 127–137 (2011).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl Acad. Sci. USA 108, 2312–2315 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl Acad. Sci. USA 108, 18726–18731 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Conradt, L. & Roper, T. J. Activity synchrony and social cohesion: a fission-fusion model. Proc. R. Soc. B, Biol. Sci. 267, 2213–2218 (2000).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Sogard, S. M. & Olla, B. L. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ. Biol. Fishes 50, 405–413 (1997).

    Article 

    Google Scholar 

  • 70.

    Domenici, P. Spacing of wild schooling herring while encircled by killer whales. J. Fish. Biol. 57, 831–836 (2000).

    Article 

    Google Scholar 

  • 71.

    Miller, N., Garnier, S., Hartnett, A. T. & Couzin, I. D. Both information and social cohesion determine collective decisions in animal groups. Proc. Natl Acad. Sci. USA 110, 5263–5268 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Granroth-Wilding, H. M. & Magurran, A. E. Asymmetry in pay-off predicts how familiar individuals respond to one another. Biol. Lett. 9, 20130025 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380 (1986).

    Article 

    Google Scholar 

  • 74.

    Ruxton, G. D., Jackson, A. L. & Tosh, C. R. Confusion of predators does not rely on specialist coordinated behavior. Behav. Ecol. 18, 590–596 (2007).

    Article 

    Google Scholar 

  • 75.

    Wolcott, H. L., Ojanguren, A. F. & Barbosa, M. The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata). PeerJ 5, e3899 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Guayasamin, O. L., Couzin, I. D. & Miller, N. Y. Behavioural plasticity across social contexts is regulated by the directionality of inter-individual differences. Behav. Proc. 141, 196–204 (2016).

    Article 

    Google Scholar 

  • 77.

    Jacoby, D. M. P., Sims, D. W. & Croft, D. P. The effect of familiarity on aggregation and social behaviour in juvenile small spotted catsharks Scyliorhinus canicula. J. Fish. Biol. 81, 1596–1610 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. Biol. Sci. 284, 20171126 (2017).

    Article 

    Google Scholar 

  • 80.

    Romenskyy, M. et al. Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions. Behav. Ecol. 31, 311–321 (2020).

    Article 

    Google Scholar 

  • 81.

    Couzin, I. D. Collective cognition in animal groups. Trends Cog. Sci. 13, 36–43 (2009).

    Article 

    Google Scholar 

  • 82.

    Bshary, R., Gingins, S. & Vail, A. L. Social cognition in fishes. Trends Cogn. Sci. 18, 465–471 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Gil, M. A., Emberts, Z., Jones, H. & St Mary, C. M. Social Information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227–241 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 84.

    May, R. M. The evolution of cooperation. Nature 292, 291–292 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Munday, P. L. & Wilson, S. K. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. J. Fish. Biol. 51, 931–938 (1997).

    CAS 

    Google Scholar 

  • 86.

    Domenici, P., Turesson, H., Brodersen, J. & Bronmark, C. Predator-induced morphology enhances escape locomotion in crucian carp. Proc. R. Soc. B. Biol. Sci. 275, 195–201 (2008).

    Article 

    Google Scholar 

  • 87.

    Turesson, H. & Domenici, P. Escape latency is size independent in grey mullet. J. Fish. Biol. 71, 253–259 (2007).

    Article 

    Google Scholar 

  • 88.

    Webb, P. W. Fast-start performance and body form in seven species of teleost fish. J. Exp. Biol. 74, 211–226 (1978).

    Article 

    Google Scholar 

  • 89.

    Marras, S. & Domenici, P. Schooling fish under attack are not all equal: some lead, others follow. PLoS ONE 8, e65784 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Bachelet, E. Circular Statistics in Biology (Academic Press, 1981).

  • 91.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).


  • Source: Ecology - nature.com

    Push to make supply chains more sustainable continues to gain momentum

    Manipulating magnets in the quest for fusion