Polechová, J. & Storch, D. Ecological niche. Encycl. Ecol. 2, 1088–1097 (2008).
Vannette, R. L. & Fukami, T. Historical contingency in species interactions: Towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).
Google Scholar
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2011).
Google Scholar
Clark, J. S. The coherence problem with the unified neutral theory of biodiversity. Trends Ecol. Evol. 27, 198–202 (2012).
Google Scholar
McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003).
Google Scholar
Bocci, A. et al. Sympatric snow leopards and Tibetan wolves: Coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).
Google Scholar
Dueser, R. D. & Shuggart, H. H. Niche pattern in a forest-floor small-mammal fauna. Ecology 60, 108–118 (1979).
Google Scholar
Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060 (2017).
Google Scholar
Armstrong, R. A. & McGehee, R. Coexistence of species competing for shared resources. Theor. Popul. Biol. 9, 317–328 (1976).
Google Scholar
Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159 (2018).
Google Scholar
Kadowaki, K. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota). Eur. J. Entomol. 107, 89 (2010).
Google Scholar
Peter, A.-K. Survival in adults of the water frog Rana lessonae and its hybridogenetic associate Rana esculenta. Can. J. Zool. 79, 652–661 (2001).
Google Scholar
Borkowski, A. & Skrzecz, I. Ecological segregation of bark beetle (Coleoptera, Curculionidae, Scolytinae) infested Scots pine. Ecol. Res. 31, 135–144 (2016).
Google Scholar
Bobiec, A., Gutowski, J. M. & Laudenslayer, W. F. The Afterlife of a Tree (WWF Poland, 2005).
Alexander, K. N. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. 10, 9–13 (2008).
Véle, A. & Horák, J. The importance of host characteristics and canopy openness for pest management in urban forests. Urban For. Urban Green. 36, 84–89 (2018).
Google Scholar
Přikryl, Z. B., Turčáni, M. & Horák, J. Sharing the same space: Foraging behaviour of saproxylic beetles in relation to dietary components of morphologically similar larvae. Ecol. Entomol. 37, 117–123 (2012).
Google Scholar
Brin, A. & Bouget, C. Biotic interactions between saproxylic insect species. In Saproxylic insects: Diversity, ecology and conservation (ed. Ulyshen, M. D.) 471–514 (Springer, 2018).
Google Scholar
Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).
Google Scholar
Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).
Google Scholar
Biedermann, P. H. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. U.S.A. 108, 17064–17069 (2011).
Google Scholar
Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).
Google Scholar
Horak, J. What is happening after an abiotic disturbance? Response of saproxylic beetles in the Primorsky Region woodlands (Far Eastern Russia). J. Insect Conserv. 19, 97–103 (2015).
Google Scholar
Hůrka, K. Beetles of the Czech and Slovak Republics (Kabourek, 2005).
Horák, J. & Chobot, K. Phenology and notes on the behaviour of Cucujus cinnaberinus: Points for understanding the conservation of the saproxylic beetle. North-West. J. Zool. 7, 352–355 (2011).
Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).
Google Scholar
Crowson, R. Observations on Dendrophagus crenatus (Paykull)(Cucujidae) and some comparisons with piestine Staphylinidae (Coleoptera). Entomol. Mon. Mag. 104, 161–169 (1969).
Tarno, H. et al. The behavioral role of males of platypus quercivorus murayama in their subsocial colonies. Agrivita 38, 47–54 (2016).
Della Rocca, F. & Milanesi, P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 47, 1427–1438 (2020).
Google Scholar
Buse, J. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 16, 93–102 (2012).
Google Scholar
Røed, K. H. et al. Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae). Conserv. Genet. Resour. 6, 641–643 (2014).
Google Scholar
Konvicka, M., Hula, V. & Fric, Z. Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture?. Eur. J. Entomol. 100, 313–322 (2003).
Google Scholar
Bonacci, T. et al. Artificial feeding and laboratory rearing of endangered saproxylic beetles as a tool for insect conservation. J. Insect Sci. 20, 20 (2020).
Google Scholar
Mazzei, A. et al. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 78, 264–270 (2011).
Google Scholar
Horák, J., Chumanová, E. & Chobot, K. Habitat preferences influencing populations, distribution and conservation of the endangered saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. Eur. J. Entomol. 107, 81–88 (2010).
Google Scholar
Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).
Google Scholar
Carmel, Y. et al. Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos 126, 1451–1458 (2017).
Google Scholar
Horák, J., Chumanová, E. & Hilszczański, J. Saproxylic beetle thrives on the openness in management: a case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conserv. Divers. 5, 403–413 (2012).
Google Scholar
Keddy, P. Competiton 2nd edn. (Springer, 2001).
Google Scholar
Bonacci, T. et al. Beetles “in red”: are the endangered flat bark beetles Cucujus cinnaberinus and C. haematodes chemically protected? (Coleoptera: Cucujidae). Eur. Zool. J. 85, 128–136 (2018).
Google Scholar
Chararas, C., Chipoulet, J. M. & Courtois, J. E. Purification partielle et caracterisation d’une beta-glucosidase des larves de Pyrochroa coccinea (Coleoptere, Pyrochroidae). C. R. Séances Soc. Biol. Fil. 1771, 22–27 (1983).
Dettner, K. Description of defensive glands from cardinal beetles (Coleoptera, Pyrochroidae)—their phylogenetic significance as compared with other heteromeran defensive glands. Entomol. Basil. 9, 204–215 (1984).
Nardi, G. & Bologna, M. Cantharidin attraction in Pyrochroa (Coleoptera: Pyrochroidae). Entomol. News 111, 74–75 (2000).
Hirzel, A. & Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 157, 331–341 (2002).
Google Scholar
Jaworski, T. et al. Saproxylic moths reveal complex within-group and group-environment patterns. J. Insect Conserv. 20, 677–690 (2016).
Google Scholar
Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null Model Analysis for Ecologicaldata. R package version 0.1.0 (Zenodo, 2015).
Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. https://CRAN.R-project.org/package=HH (2020).
Walsh, C. & Mac Nally, R. M. Hier.Part: Hierarchical partitioning. https://cran.r-project.org/web/packages/hier.part/index.html (2020).
Source: Ecology - nature.com