in

Niche partitioning among dead wood-dependent beetles

  • 1.

    Polechová, J. & Storch, D. Ecological niche. Encycl. Ecol. 2, 1088–1097 (2008).

    Google Scholar 

  • 2.

    Vannette, R. L. & Fukami, T. Historical contingency in species interactions: Towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2011).

    Book 

    Google Scholar 

  • 4.

    Clark, J. S. The coherence problem with the unified neutral theory of biodiversity. Trends Ecol. Evol. 27, 198–202 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Bocci, A. et al. Sympatric snow leopards and Tibetan wolves: Coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).

    Article 

    Google Scholar 

  • 7.

    Dueser, R. D. & Shuggart, H. H. Niche pattern in a forest-floor small-mammal fauna. Ecology 60, 108–118 (1979).

    Article 

    Google Scholar 

  • 8.

    Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Armstrong, R. A. & McGehee, R. Coexistence of species competing for shared resources. Theor. Popul. Biol. 9, 317–328 (1976).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 10.

    Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159 (2018).

    Article 

    Google Scholar 

  • 11.

    Kadowaki, K. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota). Eur. J. Entomol. 107, 89 (2010).

    Article 

    Google Scholar 

  • 12.

    Peter, A.-K. Survival in adults of the water frog Rana lessonae and its hybridogenetic associate Rana esculenta. Can. J. Zool. 79, 652–661 (2001).

    Article 

    Google Scholar 

  • 13.

    Borkowski, A. & Skrzecz, I. Ecological segregation of bark beetle (Coleoptera, Curculionidae, Scolytinae) infested Scots pine. Ecol. Res. 31, 135–144 (2016).

    Article 

    Google Scholar 

  • 14.

    Bobiec, A., Gutowski, J. M. & Laudenslayer, W. F. The Afterlife of a Tree (WWF Poland, 2005).

    Google Scholar 

  • 15.

    Alexander, K. N. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. 10, 9–13 (2008).

    Google Scholar 

  • 16.

    Véle, A. & Horák, J. The importance of host characteristics and canopy openness for pest management in urban forests. Urban For. Urban Green. 36, 84–89 (2018).

    Article 

    Google Scholar 

  • 17.

    Přikryl, Z. B., Turčáni, M. & Horák, J. Sharing the same space: Foraging behaviour of saproxylic beetles in relation to dietary components of morphologically similar larvae. Ecol. Entomol. 37, 117–123 (2012).

    Article 

    Google Scholar 

  • 18.

    Brin, A. & Bouget, C. Biotic interactions between saproxylic insect species. In Saproxylic insects: Diversity, ecology and conservation (ed. Ulyshen, M. D.) 471–514 (Springer, 2018).

    Chapter 

    Google Scholar 

  • 19.

    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).

    Book 

    Google Scholar 

  • 20.

    Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Biedermann, P. H. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. U.S.A. 108, 17064–17069 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Horak, J. What is happening after an abiotic disturbance? Response of saproxylic beetles in the Primorsky Region woodlands (Far Eastern Russia). J. Insect Conserv. 19, 97–103 (2015).

    Article 

    Google Scholar 

  • 24.

    Hůrka, K. Beetles of the Czech and Slovak Republics (Kabourek, 2005).

    Google Scholar 

  • 25.

    Horák, J. & Chobot, K. Phenology and notes on the behaviour of Cucujus cinnaberinus: Points for understanding the conservation of the saproxylic beetle. North-West. J. Zool. 7, 352–355 (2011).

    Google Scholar 

  • 26.

    Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Crowson, R. Observations on Dendrophagus crenatus (Paykull)(Cucujidae) and some comparisons with piestine Staphylinidae (Coleoptera). Entomol. Mon. Mag. 104, 161–169 (1969).

    Google Scholar 

  • 28.

    Tarno, H. et al. The behavioral role of males of platypus quercivorus murayama in their subsocial colonies. Agrivita 38, 47–54 (2016).

    Google Scholar 

  • 29.

    Della Rocca, F. & Milanesi, P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 47, 1427–1438 (2020).

    Article 

    Google Scholar 

  • 30.

    Buse, J. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 16, 93–102 (2012).

    Article 

    Google Scholar 

  • 31.

    Røed, K. H. et al. Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae). Conserv. Genet. Resour. 6, 641–643 (2014).

    Article 

    Google Scholar 

  • 32.

    Konvicka, M., Hula, V. & Fric, Z. Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture?. Eur. J. Entomol. 100, 313–322 (2003).

    Article 

    Google Scholar 

  • 33.

    Bonacci, T. et al. Artificial feeding and laboratory rearing of endangered saproxylic beetles as a tool for insect conservation. J. Insect Sci. 20, 20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Mazzei, A. et al. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 78, 264–270 (2011).

    Article 

    Google Scholar 

  • 35.

    Horák, J., Chumanová, E. & Chobot, K. Habitat preferences influencing populations, distribution and conservation of the endangered saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. Eur. J. Entomol. 107, 81–88 (2010).

    Article 

    Google Scholar 

  • 36.

    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Carmel, Y. et al. Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos 126, 1451–1458 (2017).

    Article 

    Google Scholar 

  • 38.

    Horák, J., Chumanová, E. & Hilszczański, J. Saproxylic beetle thrives on the openness in management: a case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conserv. Divers. 5, 403–413 (2012).

    Article 

    Google Scholar 

  • 39.

    Keddy, P. Competiton 2nd edn. (Springer, 2001).

    Book 

    Google Scholar 

  • 40.

    Bonacci, T. et al. Beetles “in red”: are the endangered flat bark beetles Cucujus cinnaberinus and C. haematodes chemically protected? (Coleoptera: Cucujidae). Eur. Zool. J. 85, 128–136 (2018).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Chararas, C., Chipoulet, J. M. & Courtois, J. E. Purification partielle et caracterisation d’une beta-glucosidase des larves de Pyrochroa coccinea (Coleoptere, Pyrochroidae). C. R. Séances Soc. Biol. Fil. 1771, 22–27 (1983).

    Google Scholar 

  • 42.

    Dettner, K. Description of defensive glands from cardinal beetles (Coleoptera, Pyrochroidae)—their phylogenetic significance as compared with other heteromeran defensive glands. Entomol. Basil. 9, 204–215 (1984).

    Google Scholar 

  • 43.

    Nardi, G. & Bologna, M. Cantharidin attraction in Pyrochroa (Coleoptera: Pyrochroidae). Entomol. News 111, 74–75 (2000).

    Google Scholar 

  • 44.

    Hirzel, A. & Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 157, 331–341 (2002).

    Article 

    Google Scholar 

  • 45.

    Jaworski, T. et al. Saproxylic moths reveal complex within-group and group-environment patterns. J. Insect Conserv. 20, 677–690 (2016).

    Article 

    Google Scholar 

  • 46.

    Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null Model Analysis for Ecologicaldata. R package version 0.1.0 (Zenodo, 2015).

  • 47.

    Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. https://CRAN.R-project.org/package=HH (2020).

  • 48.

    Walsh, C. & Mac Nally, R. M. Hier.Part: Hierarchical partitioning. https://cran.r-project.org/web/packages/hier.part/index.html (2020).


  • Source: Ecology - nature.com

    A material difference

    Comparative assessment of amino acids composition in two types of marine fish silage