Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110–110. https://doi.org/10.1016/j.tree.2005.01.003 (2005).
Google Scholar
Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).
Google Scholar
Elton, C. S. Animal Ecology and Evolution (Clarendon Press, 1930).
Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl. Acad. Sci. U.S.A. 103, 374–378. https://doi.org/10.1073/pnas.0504272102 (2006).
Google Scholar
Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172. https://doi.org/10.1038/s41559-017-0172 (2017).
Google Scholar
Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522–1536. https://doi.org/10.2307/176544 (1999).
Google Scholar
Pyšek, P. et al. MAcroecological framework for invasive aliens (MAFIA): Disentangling large-scale context dependence in biological invasions. Neobiota https://doi.org/10.3897/neobiota.62.52787 (2020).
Google Scholar
Donaldson, J. E. et al. Invasion trajectory of alien trees: the role of introduction pathway and planting history. Glob. Change Biol. 20, 1527–1537. https://doi.org/10.1111/gcb.12486 (2014).
Google Scholar
Sax, D. F. & Brown, J. H. The paradox of invasion. Glob. Ecol. Biogeogr. 9, 363–371. https://doi.org/10.1046/j.1365-2699.2000.00217.x (2000).
Google Scholar
Valido, A., Rodriguez-Rodriguez, M. C. & Jordano, P. Honeybees disrupt the structure and functionality of plant-pollinator networks. Sci. Rep. 9, a4711. https://doi.org/10.1038/s41598-019-41271-5 (2019).
Google Scholar
Morales, C. L. & Aizen, M. A. Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north-west Patagonia, Argentina. J. Ecol. 94, 171–180. https://doi.org/10.1111/j.1365-2745.2005.01069.x (2006).
Google Scholar
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—The role of mutualisms. Biol. Rev. 75, 65–93. https://doi.org/10.1017/S0006323199005435 (2000).
Google Scholar
Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown?. Biol. Invasions 1, 21–32. https://doi.org/10.1023/A:1010086329619 (1999).
Google Scholar
Vazquez, D. P. & Aizen, M. A. Asymmetric specialization: A pervasive feature of plant-pollinator interactions. Ecology 85, 1251–1257. https://doi.org/10.1890/03-3112 (2004).
Google Scholar
Shigesada, N. & Kawasaki, K. Biological Invasions: Theory and Practice (Oxford University Press, 1997).
Liebhold, A. M., Keitt, T. H., Goel, N. & Bertelsmeier, C. Scale invariance in the spatial-dynamics of biological invasions. Neobiota https://doi.org/10.3897/neobiota.62.53213 (2020).
Google Scholar
Mainali, K. P. et al. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Change Biol. 21, 4464–4480. https://doi.org/10.1111/gcb.13038 (2015).
Google Scholar
Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS ONE 13, e0193085. https://doi.org/10.1371/journal.pone.0193085 (2018).
Google Scholar
Dafni, A., Kevan, P., Gross, C. L. & Goka, K. Bombus terrestris, pollinator, invasive and pest: An assessment of problems associated with its widespread introductions for commercial purposes. Appl. Entomol. Zool. 45, 101–113. https://doi.org/10.1303/aez.2010.101 (2010).
Google Scholar
Velthuis, H. H. W. & van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451. https://doi.org/10.1051/apido:2006019 (2006).
Google Scholar
Medel, R., González-Browne, C., Salazar, D. A., Ferrer, P. & Ehrenfeld, M. The most effective pollinator principle applies to new invasive pollinators. Biol. Lett. https://doi.org/10.1098/rsbl.2018.0132 (2018).
Google Scholar
Smith-Ramirez, C. et al. The reasons why Chile should stop importing commercial bumblebee Bombus terrestris (Linnaeus) and to start controlling it. Gayana 82, 118–127. https://doi.org/10.4067/S0717-65382018000200118 (2018).
Google Scholar
Aizen, M. A. et al. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J. Appl. Ecol. 56, 100–106. https://doi.org/10.1111/1365-2664.13121 (2019).
Google Scholar
Acosta, A. L., Giannini, T. C., Imperatriz-Fonseca, V. L. & Saraiva, A. M. Worldwide alien invasion: A methodological approach to forecast the potential spread of a highly invasive pollinator. PLoS ONE 11, e0148295. https://doi.org/10.1371/journal.pone.0148295 (2016).
Google Scholar
Geslin, B. & Morales, C. L. New records reveal rapid geographic expansion of Bombus terrestris Linnaeus, 1758 (Hymenoptera: Apidae), an invasive species in Argentina. CheckList 11, a1620. https://doi.org/10.15560/11.3.1620 (2015).
Google Scholar
Montalva, J., Sepulveda, V., Vivallo, F. & Silva, D. P. New records of an invasive bumble bee in northern Chile: Expansion of its range or new introduction events?. J. Insect Conserv. 21, 657–666. https://doi.org/10.1007/s10841-017-0008-x (2017).
Google Scholar
González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530. https://doi.org/10.1016/j.tree.2013.05.008 (2013).
Google Scholar
Knapp, J. L., Becher, M. A., Rankin, C. C., Twiston-Davies, G. & Osborne, J. L. Bombus terrestris in a mass-flowering pollinator-dependent crop: A mutualistic relationship?. Ecol. Evol. 9, 609–618. https://doi.org/10.1002/ece3.4784 (2019).
Google Scholar
Nilsen, E. B., Pedersen, S. & Linnell, J. D. C. Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?. Ecol. Res. 23, 635–639. https://doi.org/10.1007/s11284-007-0421-9 (2008).
Google Scholar
Kadoya, T. & Washitani, I. Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris) using a stochastic spatio-temporal model. Biol. Conserv. 143, 1228–1235. https://doi.org/10.1016/j.biocon.2010.02.030 (2010).
Google Scholar
Kadoya, T., Ishii, H. S., Kikuchi, R., Suda, S. & Washitani, I. Using monitoring data gathered by volunteers to predict the potential distribution of the invasive alien bumblebee Bombus terrestris. Biol. Conserv. 142, 1011–1017. https://doi.org/10.1016/j.biocon.2009.01.012 (2009).
Google Scholar
Murúa, M., Espindola, A., González, A. & Medel, R. Pollinators and crossability as reproductive isolation barriers in two sympatric oil-rewarding Calceolaria (Calceolariaceae) species. Evol. Ecol. 31, 421–434. https://doi.org/10.1007/s10682-017-9894-3 (2017).
Google Scholar
Valdivia, C. E., Carroza, J. P. & Orellana, J. I. Geographic distribution and trait-mediated causes of nectar robbing by the European bumblebee Bombus terrestris on the Patagonian shrub Fuchsia magellanica. Flora 225, 30–36. https://doi.org/10.1016/j.flora.2016.09.010 (2016).
Google Scholar
Herbertsson, L. et al. Long-term data shows increasing dominance of Bombus terrestris with climate warming. Basic Appl. Ecol. 53, 116–123. https://doi.org/10.1016/j.baae.2021.03.008 (2021).
Google Scholar
Aizen, M. A. et al. When mutualism goes bad: Density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–328. https://doi.org/10.1111/nph.12924 (2014).
Google Scholar
Esterio, G. et al. Assessing the impact of the invasive buff-tailed bumblebee (Bombus terrestris) on the pollination of the native Chilean herb Mimulus luteus. Arthropod-Plant Interact. 7, 467–474. https://doi.org/10.1007/s11829-013-9264-1 (2013).
Google Scholar
Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11, 529–534. https://doi.org/10.1890/120321 (2013).
Google Scholar
Plischuk, S., Antunez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9, 169–173. https://doi.org/10.1111/1758-2229.12520 (2017).
Google Scholar
Plischuk, S. & Lange, C. E. Invasive Bombus terrestris (Hymenoptera: Apidae) parasitized by a flagellate (Euglenozoa: Kinetoplastea) and a neogregarine (Apicomplexa: Neogregarinorida). J. Invertebr. Pathol. 102, 261–263. https://doi.org/10.1016/j.jip.2009.08.005 (2009).
Google Scholar
Plischuk, S., Meeus, I., Smagghe, G. & Lange, C. E. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina. Environ. Microbiol. Rep. 3, 565–568. https://doi.org/10.1111/j.1758-2229.2011.00261.x (2011).
Google Scholar
Ruz, L. & Herrera, R. Preliminary observations on foraging activities of Bombus dahlbomii and Bombus terrestris (Hymenoptera: Apidae) on native and non-native vegetation in Chile. Acta Hortic. 561, 165–169. https://doi.org/10.17660/ActaHortic.2001.561.24 (2000).
Google Scholar
Sáez, A., Morales, C. L., Garibaldi, L. A. & Aizen, M. A. Invasive bumble bees reduce nectar availability for honey bees by robbing raspberry flower buds. Basic Appl. Ecol. 19, 26–35. https://doi.org/10.1016/j.baae.2017.01.001 (2017).
Google Scholar
Sáez, A., Morales, J. M., Morales, C. L., Harder, L. D. & Aizen, M. A. The costs and benefits of pollinator dependence: Empirically based simulations predict raspberry fruit quality. Ecol. Appl. 28, 1215–1222. https://doi.org/10.1002/eap.1720 (2018).
Google Scholar
Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837. https://doi.org/10.1111/1365-2656.12185 (2014).
Google Scholar
Torretta, J. P., Medan, D. & Arahamovich, A. H. First record of the invasive bumblebee Bombus terrestris (L.) (Hymenoptera, Apidae) in Argentina. Trans. Am. Entomol. Soc. 132, 285–289 (2006).
Google Scholar
Arismendi, N., Bruna, A., Zapata, N. & Vargas, M. Molecular detection of the tracheal mite Locustacarus buchneri in native and non-native bumble bees in Chile. Insect Soc 63, 629–633. https://doi.org/10.1007/s00040-016-0502-2 (2016).
Google Scholar
Polidori, C. & Nieves-Aldrey, J. Comparative flight morphology in queens of invasive and native Patagonian bumblebees (Hymenoptera: Bombus). Crit. Biol. 338, 126–133. https://doi.org/10.1016/j.crvi.2014.11.001 (2015).
Google Scholar
Vieli, L., Davis, F. W., Kendall, B. E. & Altieri, M. Landscape effects on wild Bombus terrestris (Hymenoptera: Apidae) queens visiting highbush blueberry fields in south-central Chile. Apidologie 47, 711–716. https://doi.org/10.1007/s13592-015-0422-6 (2016).
Google Scholar
Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612. https://doi.org/10.1111/1365-2664.12325 (2014).
Google Scholar
Montalva, J., Dudley, L., Arroyo, M. K., Retamales, H. & Abrahamovich, A. H. Geographic distribution and associated flora of native and introduced bumble bees (Bombus spp.) in Chile. J. Apicult Res. 50, 11–21. https://doi.org/10.3896/Ibra.1.50.1.02 (2011).
Google Scholar
GBIF.org. GBIF Occurrence Download (April 15, 2020). https://doi.org/10.15468/dl.f15467jezh.
R: A Language and Environment for Statistical Computing, Version 3.6.3 (Foundation for Statistical Computing, 2020).
Source: Ecology - nature.com