in

Invasion dynamics of the European bumblebee Bombus terrestris in the southern part of South America

  • 1.

    Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110–110. https://doi.org/10.1016/j.tree.2005.01.003 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).

    Article 

    Google Scholar 

  • 3.

    Elton, C. S. Animal Ecology and Evolution (Clarendon Press, 1930).

    Google Scholar 

  • 4.

    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl. Acad. Sci. U.S.A. 103, 374–378. https://doi.org/10.1073/pnas.0504272102 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172. https://doi.org/10.1038/s41559-017-0172 (2017).

    Article 

    Google Scholar 

  • 6.

    Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522–1536. https://doi.org/10.2307/176544 (1999).

    Article 

    Google Scholar 

  • 7.

    Pyšek, P. et al. MAcroecological framework for invasive aliens (MAFIA): Disentangling large-scale context dependence in biological invasions. Neobiota https://doi.org/10.3897/neobiota.62.52787 (2020).

    Article 

    Google Scholar 

  • 8.

    Donaldson, J. E. et al. Invasion trajectory of alien trees: the role of introduction pathway and planting history. Glob. Change Biol. 20, 1527–1537. https://doi.org/10.1111/gcb.12486 (2014).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Sax, D. F. & Brown, J. H. The paradox of invasion. Glob. Ecol. Biogeogr. 9, 363–371. https://doi.org/10.1046/j.1365-2699.2000.00217.x (2000).

    Article 

    Google Scholar 

  • 10.

    Valido, A., Rodriguez-Rodriguez, M. C. & Jordano, P. Honeybees disrupt the structure and functionality of plant-pollinator networks. Sci. Rep. 9, a4711. https://doi.org/10.1038/s41598-019-41271-5 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Morales, C. L. & Aizen, M. A. Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north-west Patagonia, Argentina. J. Ecol. 94, 171–180. https://doi.org/10.1111/j.1365-2745.2005.01069.x (2006).

    Article 

    Google Scholar 

  • 12.

    Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—The role of mutualisms. Biol. Rev. 75, 65–93. https://doi.org/10.1017/S0006323199005435 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown?. Biol. Invasions 1, 21–32. https://doi.org/10.1023/A:1010086329619 (1999).

    Article 

    Google Scholar 

  • 14.

    Vazquez, D. P. & Aizen, M. A. Asymmetric specialization: A pervasive feature of plant-pollinator interactions. Ecology 85, 1251–1257. https://doi.org/10.1890/03-3112 (2004).

    Article 

    Google Scholar 

  • 15.

    Shigesada, N. & Kawasaki, K. Biological Invasions: Theory and Practice (Oxford University Press, 1997).

    Google Scholar 

  • 16.

    Liebhold, A. M., Keitt, T. H., Goel, N. & Bertelsmeier, C. Scale invariance in the spatial-dynamics of biological invasions. Neobiota https://doi.org/10.3897/neobiota.62.53213 (2020).

    Article 

    Google Scholar 

  • 17.

    Mainali, K. P. et al. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Change Biol. 21, 4464–4480. https://doi.org/10.1111/gcb.13038 (2015).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS ONE 13, e0193085. https://doi.org/10.1371/journal.pone.0193085 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Dafni, A., Kevan, P., Gross, C. L. & Goka, K. Bombus terrestris, pollinator, invasive and pest: An assessment of problems associated with its widespread introductions for commercial purposes. Appl. Entomol. Zool. 45, 101–113. https://doi.org/10.1303/aez.2010.101 (2010).

    Article 

    Google Scholar 

  • 20.

    Velthuis, H. H. W. & van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451. https://doi.org/10.1051/apido:2006019 (2006).

    Article 

    Google Scholar 

  • 21.

    Medel, R., González-Browne, C., Salazar, D. A., Ferrer, P. & Ehrenfeld, M. The most effective pollinator principle applies to new invasive pollinators. Biol. Lett. https://doi.org/10.1098/rsbl.2018.0132 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Smith-Ramirez, C. et al. The reasons why Chile should stop importing commercial bumblebee Bombus terrestris (Linnaeus) and to start controlling it. Gayana 82, 118–127. https://doi.org/10.4067/S0717-65382018000200118 (2018).

    Article 

    Google Scholar 

  • 23.

    Aizen, M. A. et al. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J. Appl. Ecol. 56, 100–106. https://doi.org/10.1111/1365-2664.13121 (2019).

    Article 

    Google Scholar 

  • 24.

    Acosta, A. L., Giannini, T. C., Imperatriz-Fonseca, V. L. & Saraiva, A. M. Worldwide alien invasion: A methodological approach to forecast the potential spread of a highly invasive pollinator. PLoS ONE 11, e0148295. https://doi.org/10.1371/journal.pone.0148295 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Geslin, B. & Morales, C. L. New records reveal rapid geographic expansion of Bombus terrestris Linnaeus, 1758 (Hymenoptera: Apidae), an invasive species in Argentina. CheckList 11, a1620. https://doi.org/10.15560/11.3.1620 (2015).

    Article 

    Google Scholar 

  • 26.

    Montalva, J., Sepulveda, V., Vivallo, F. & Silva, D. P. New records of an invasive bumble bee in northern Chile: Expansion of its range or new introduction events?. J. Insect Conserv. 21, 657–666. https://doi.org/10.1007/s10841-017-0008-x (2017).

    Article 

    Google Scholar 

  • 27.

    González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530. https://doi.org/10.1016/j.tree.2013.05.008 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Knapp, J. L., Becher, M. A., Rankin, C. C., Twiston-Davies, G. & Osborne, J. L. Bombus terrestris in a mass-flowering pollinator-dependent crop: A mutualistic relationship?. Ecol. Evol. 9, 609–618. https://doi.org/10.1002/ece3.4784 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Nilsen, E. B., Pedersen, S. & Linnell, J. D. C. Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?. Ecol. Res. 23, 635–639. https://doi.org/10.1007/s11284-007-0421-9 (2008).

    Article 

    Google Scholar 

  • 30.

    Kadoya, T. & Washitani, I. Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris) using a stochastic spatio-temporal model. Biol. Conserv. 143, 1228–1235. https://doi.org/10.1016/j.biocon.2010.02.030 (2010).

    Article 

    Google Scholar 

  • 31.

    Kadoya, T., Ishii, H. S., Kikuchi, R., Suda, S. & Washitani, I. Using monitoring data gathered by volunteers to predict the potential distribution of the invasive alien bumblebee Bombus terrestris. Biol. Conserv. 142, 1011–1017. https://doi.org/10.1016/j.biocon.2009.01.012 (2009).

    Article 

    Google Scholar 

  • 32.

    Murúa, M., Espindola, A., González, A. & Medel, R. Pollinators and crossability as reproductive isolation barriers in two sympatric oil-rewarding Calceolaria (Calceolariaceae) species. Evol. Ecol. 31, 421–434. https://doi.org/10.1007/s10682-017-9894-3 (2017).

    Article 

    Google Scholar 

  • 33.

    Valdivia, C. E., Carroza, J. P. & Orellana, J. I. Geographic distribution and trait-mediated causes of nectar robbing by the European bumblebee Bombus terrestris on the Patagonian shrub Fuchsia magellanica. Flora 225, 30–36. https://doi.org/10.1016/j.flora.2016.09.010 (2016).

    Article 

    Google Scholar 

  • 34.

    Herbertsson, L. et al. Long-term data shows increasing dominance of Bombus terrestris with climate warming. Basic Appl. Ecol. 53, 116–123. https://doi.org/10.1016/j.baae.2021.03.008 (2021).

    Article 

    Google Scholar 

  • 35.

    Aizen, M. A. et al. When mutualism goes bad: Density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–328. https://doi.org/10.1111/nph.12924 (2014).

    Article 

    Google Scholar 

  • 36.

    Esterio, G. et al. Assessing the impact of the invasive buff-tailed bumblebee (Bombus terrestris) on the pollination of the native Chilean herb Mimulus luteus. Arthropod-Plant Interact. 7, 467–474. https://doi.org/10.1007/s11829-013-9264-1 (2013).

    Article 

    Google Scholar 

  • 37.

    Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11, 529–534. https://doi.org/10.1890/120321 (2013).

    Article 

    Google Scholar 

  • 38.

    Plischuk, S., Antunez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9, 169–173. https://doi.org/10.1111/1758-2229.12520 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Plischuk, S. & Lange, C. E. Invasive Bombus terrestris (Hymenoptera: Apidae) parasitized by a flagellate (Euglenozoa: Kinetoplastea) and a neogregarine (Apicomplexa: Neogregarinorida). J. Invertebr. Pathol. 102, 261–263. https://doi.org/10.1016/j.jip.2009.08.005 (2009).

    Article 

    Google Scholar 

  • 40.

    Plischuk, S., Meeus, I., Smagghe, G. & Lange, C. E. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina. Environ. Microbiol. Rep. 3, 565–568. https://doi.org/10.1111/j.1758-2229.2011.00261.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Ruz, L. & Herrera, R. Preliminary observations on foraging activities of Bombus dahlbomii and Bombus terrestris (Hymenoptera: Apidae) on native and non-native vegetation in Chile. Acta Hortic. 561, 165–169. https://doi.org/10.17660/ActaHortic.2001.561.24 (2000).

    Article 

    Google Scholar 

  • 42.

    Sáez, A., Morales, C. L., Garibaldi, L. A. & Aizen, M. A. Invasive bumble bees reduce nectar availability for honey bees by robbing raspberry flower buds. Basic Appl. Ecol. 19, 26–35. https://doi.org/10.1016/j.baae.2017.01.001 (2017).

    Article 

    Google Scholar 

  • 43.

    Sáez, A., Morales, J. M., Morales, C. L., Harder, L. D. & Aizen, M. A. The costs and benefits of pollinator dependence: Empirically based simulations predict raspberry fruit quality. Ecol. Appl. 28, 1215–1222. https://doi.org/10.1002/eap.1720 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 44.

    Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837. https://doi.org/10.1111/1365-2656.12185 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Torretta, J. P., Medan, D. & Arahamovich, A. H. First record of the invasive bumblebee Bombus terrestris (L.) (Hymenoptera, Apidae) in Argentina. Trans. Am. Entomol. Soc. 132, 285–289 (2006).

    Article 

    Google Scholar 

  • 46.

    Arismendi, N., Bruna, A., Zapata, N. & Vargas, M. Molecular detection of the tracheal mite Locustacarus buchneri in native and non-native bumble bees in Chile. Insect Soc 63, 629–633. https://doi.org/10.1007/s00040-016-0502-2 (2016).

    Article 

    Google Scholar 

  • 47.

    Polidori, C. & Nieves-Aldrey, J. Comparative flight morphology in queens of invasive and native Patagonian bumblebees (Hymenoptera: Bombus). Crit. Biol. 338, 126–133. https://doi.org/10.1016/j.crvi.2014.11.001 (2015).

    Article 

    Google Scholar 

  • 48.

    Vieli, L., Davis, F. W., Kendall, B. E. & Altieri, M. Landscape effects on wild Bombus terrestris (Hymenoptera: Apidae) queens visiting highbush blueberry fields in south-central Chile. Apidologie 47, 711–716. https://doi.org/10.1007/s13592-015-0422-6 (2016).

    Article 

    Google Scholar 

  • 49.

    Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612. https://doi.org/10.1111/1365-2664.12325 (2014).

    Article 

    Google Scholar 

  • 50.

    Montalva, J., Dudley, L., Arroyo, M. K., Retamales, H. & Abrahamovich, A. H. Geographic distribution and associated flora of native and introduced bumble bees (Bombus spp.) in Chile. J. Apicult Res. 50, 11–21. https://doi.org/10.3896/Ibra.1.50.1.02 (2011).

    Article 

    Google Scholar 

  • 51.

    GBIF.org. GBIF Occurrence Download (April 15, 2020). https://doi.org/10.15468/dl.f15467jezh.

  • 52.

    R: A Language and Environment for Statistical Computing, Version 3.6.3 (Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    Investigating materials for safe, secure nuclear power