in

Geodiversity impacts plant community structure in a semi-arid region

  • 1.

    Gray, M., Gordon, J. & Brown, E. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 124, 659–673 (2013).

    Article 

    Google Scholar 

  • 2.

    Gray, M. Valuing geodiversity in an ‘ecosystem services’ context. Scott. Geogr. J. 128, 177–194 (2012).

    Article 

    Google Scholar 

  • 3.

    Warren, A. & French, J. R. Habitat Conservation: Managing the Physical Environment (Wiley, Hoboken, 2001).

    Google Scholar 

  • 4.

    Gordon, J. E., Barron, H. F., Hansom, J. D. & Thomas, M. F. Engaging with geodiversity—Why it matters. Proc. Geol. Assoc. 123, 1–6 (2012).

    Article 

    Google Scholar 

  • 5.

    Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature 448 (Wiley, 2004).

    Google Scholar 

  • 7.

    Serrano, E. & Ruiz-Flano, P. Geodiversity. A theoretical and applied concept. Geogr. Helv. Jg 62, 140–147 (2007).

    Article 

    Google Scholar 

  • 8.

    Comer, P. J. et al. Incorporating geodiversity into conservation decisions. Conserv. Biol. 29, 692–701 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Pătru-Stupariu, I. et al. Integrating geo-biodiversity features in the analysis of landscape patterns. Ecol. Indic. 80, 363–375 (2017).

    Article 

    Google Scholar 

  • 10.

    Chakraborty, A. & Gray, M. A call for mainstreaming geodiversity in nature conservation research and praxis. J. Nat. Conserv. 56, 125862 (2020).

    Article 

    Google Scholar 

  • 11.

    Poesen, J., Torri, D. & Bunte, K. Effects of rock fragments on soil erosion by water at different spatial scales: A review. CATENA 23, 141–166 (1994).

    Article 

    Google Scholar 

  • 12.

    Zhang, Y., Zhang, M., Niu, J., Li, H. & Xiao, R. Rock fragments and soil hydrological processes: Significance and progress. CATENA 147, 153–166 (2016).

    Article 

    Google Scholar 

  • 13.

    Xia, L. et al. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi-arid region of China. Hydrol. Process. 32, 792–804 (2018).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Lavee, H. & Poesen, J. W. A. Overland flow generation and continuity on stone-covered soil surfaces. Hydrol. Process. 5, 345–360 (1991).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Agassi, M. & Levy, G. Stone cover and rain intensity—Effects on infiltration, erosion and water splash. Soil Res. 29, 565–575 (1991).

    Article 

    Google Scholar 

  • 16.

    Mandal, U. K. et al. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. Eur. J. Soil Sci. 56, 435–443 (2005).

    Article 

    Google Scholar 

  • 17.

    Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 52, 59–68 (2001).

    Article 

    Google Scholar 

  • 18.

    Jury, W. A. & Bellantuoni, B. Heat and water movement under surface rocks in a field soil: I. Thermal effects. Soil Sci. Soc. Am. J. 40, 505–509 (1976).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Yuan, C., Lei, T., Mao, L., Liu, H. & Wu, Y. Catena soil surface evaporation processes under mulches of different sized gravel. CATENA 78, 117–121 (2009).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Poesen, J. & Lavee, H. Rock fragments in top soils: Significance and processes. CATENA 23, 1–28 (1994).

    Article 

    Google Scholar 

  • 21.

    Yizhaq, H., Stavi, I., Shachak, M. & Bel, G. Geodiversity increases ecosystem durability to prolonged droughts. Ecol. Complex. 31, 96–103 (2017).

    Article 

    Google Scholar 

  • 22.

    Stavi, I., Rachmilevitch, S. & Yizhaq, H. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. CATENA 176, 372–380 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Preisler, Y. et al. Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct. Ecol. 33, 901–912 (2019).

    Article 

    Google Scholar 

  • 24.

    Sauer, T. J. & Logsdon, S. D. Hydraulic and Physical Properties of Stony Soils in a Small Watershed. Soil Sci. Soc. Am. J. 66, 1947–1956 (2002).

  • 25.

    Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H. & Sarah, P. Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology 101, 595–606 (2008).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Ceacero, C. J., Díaz-Hernández, J. L., de Campo, A. D. & Navarro-Cerrillo, R. M. Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil Tillage Res. 197, 104495 (2020).

    Article 

    Google Scholar 

  • 27.

    Burnett, M. R., August, P. V., Brown, J. H. & Killingbeck, K. T. The influence of geomorphological heterogeneity on biodiversity I. A patch-scale perspective. Conserv. Biol. 12, 363–370 (2008).

    Article 

    Google Scholar 

  • 28.

    Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Stavi, I., Rachmilevitch, S. & Yizhaq, H. Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. L. Degrad. Dev. 29, 205–209 (2018).

    Article 

    Google Scholar 

  • 30.

    Dubinin, V., Stavi, I., Svoray, T., Dorman, M. & Yizhaq, H. Hillslope geodiversity improves the resistance of shrubs to prolonged droughts in semiarid ecosystems. J. Arid Environ. 188, 104462 (2021).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Stavi, I., Rachmilevitch, S., Hjazin, A. & Yizhaq, H. Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surf. Process. Landforms 43, 2808–2817 (2018).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Bailey, J. J., Boyd, D. S. & Field, R. Models of upland species’ distributions are improved by accounting for geodiversity. Landscape Ecol. https://doi.org/10.1007/s10980-018-0723-z (2018).

    Article 

    Google Scholar 

  • 35.

    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Nichols, W. F., Killingbeck, K. T. & August, P. V. The influence biodiversity of geomorphological heterogeneity: II. A landscape perspective. Soc. Conserv. Biol. 12, 371–397 (1998).

    Article 

    Google Scholar 

  • 38.

    Alahuhta, J., Toivanen, M. & Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 4, 2–3 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Evenari, M., Shanan, L., Tadmor, N. & Shkolnik, A. The Negev: The Challenge of a Desert (Harvard University Press, 1982).

    Book 

    Google Scholar 

  • 40.

    Akttani, H., Trimborn, P. & Ziegler, H. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst. Evol. 206, 187–221 (1997).

    Article 

    Google Scholar 

  • 41.

    Harley, J. The Biology of Mycorrhiza (Leonard Hill, 1969).

    Google Scholar 

  • 42.

    Mejsti, V. K. & Cudlin, P. Mycorrhiza in some plant desert species in Algeria. Plant Soil 71, 363–366 (1983).

    Article 

    Google Scholar 

  • 43.

    Segoli, M., Ungar, E. D. & Shachak, M. Shrubs enhance resilience of a semi-arid ecosystem by engineering and regrowth. Ecohydrology 1, 330–339 (2008).

    Article 

    Google Scholar 

  • 44.

    Gilad, E., Von Hardenberg, J., Provenzale, A., Shachak, M. & Meron, E. Ecosystem engineers: From pattern formation to habitat creation. Phys. Rev. Lett. 93, 098105 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Wright, J. P., Jones, C. G., Boeken, B. & Shachak, M. Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J. Ecol. 94, 815–824 (2006).

    Article 

    Google Scholar 

  • 46.

    Katra, I., Blumberg, D. G., Lavee, H. & Sarah, P. Spatial distribution dynamics of topsoil moisture in shrub microenvironment after rain events in arid and semi-arid areas by means of high-resolution maps. Geomorphology 86, 455–464 (2007).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Hoffman, O., de Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. 27, 578–586 (2016).

    Article 

    Google Scholar 

  • 48.

    Shachak, M. et al. Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58, 209–221 (2008).

    Article 

    Google Scholar 

  • 49.

    Madrigal-González, J., García-Rodríguez, J. A. & Alarcos-Izquierdo, G. Testing general predictions of the stress gradient hypothesis under high inter- and intra-specific nurse shrub variability along a climatic gradient. J. Veg. Sci. 23, 52–61 (2012).

    Article 

    Google Scholar 

  • 50.

    Boeken, B. & Shachak, M. The dynamics of abundance and incidence of annual plant species during colonization in a desert. Ecography (Cop.) 21, 63–73 (1998).

    Article 

    Google Scholar 

  • 51.

    Golodets, C. & Boeken, B. Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties. CATENA 65, 285–291 (2006).

    Article 

    Google Scholar 

  • 52.

    Boeken, B. & Shachak, M. Desert plant communities in human-made patches-implications for management. Ecol. Appl. 4, 702–716 (1994).

    Article 

    Google Scholar 

  • 53.

    Hoffman, O., Yizhaq, H. & Boeken, B. Small-scale effects of annual and woody vegetation on sediment displacement under field conditions. CATENA 109, 157–163 (2013).

    Article 

    Google Scholar 

  • 54.

    Zaady, E., Arbel, S., Barkai, D. & Sarig, S. Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J. Arid Environ. 90, 5–11 (2013).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Zaady, E., Stavi, I. & Yizhaq, H. Hillslope geodiversity effects on properties and composition of biological soil crusts in drylands. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.13097 (2021).

    Article 

    Google Scholar 

  • 56.

    Feinbrun-Dothan, N. & Danin, A. Analytical Flora of Eretz-Israel (Cana Publishing Ltd, 1991).

    Google Scholar 

  • 57.

    Solovchenko, A., Merzlyak, M. N., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. Coordinated carotenoid and lipid syntheses induced in parietochloris incisa (chlorophyta, trebouxiophyceae) mutant deficient in δ5 desaturase by nitrogen starvation and high light. J. Phycol. 46, 763–772 (2010).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 59.

    Simpson, E. Measurement of diversity. Nature 163, 688 (1949).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • 60.

    R Core Team. R: A language and environment for statistical Computing. R Foundation for Statistical  Computing, Vienna, Austria (2020).

  • 61.

    Richerson, P. J. & Lum, K. Patterns of plant species diversity in California: Relation to weather and topography. Am. Nat. 116, 504–536 (1980).

    Article 

    Google Scholar 

  • 62.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 63.

    Alahuhta, J. et al. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Indic. 91, 47–56 (2018).

    Article 

    Google Scholar 

  • 64.

    Zarnetske, P. L. et al. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Wiley Online Libr. 28, 548–556 (2019).

    Google Scholar 

  • 65.

    Schrodt, F. et al. To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. U. S. A. 116, 16155–161658 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Read, Q. D. et al. Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Wiley Online Libr. 29, 696–710 (2020).

    Google Scholar 

  • 67.

    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Knudson, C., Kay, K. & Fisher, S. Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nat. Clim. Change 8, 678–685 (2018).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Beier, P., Hunter, M. L. & Anderson, M. Special section: Conserving nature’s stage. Conserv. Biol. 29, 613–617 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Dubinin, V., Svoray, T., Stavi, I. & Yizhaq, H. Using LANDSAT 8 and VENµS data to study the effect of geodiversity on soil moisture dynamics in a semiarid shrubland. Remote Sens. 12, 3377 (2020).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Renne, R. R. et al. Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. Ecology 100, e02889 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Gutterman, Y., Golan, T. & Garsani, M. Porcupine diggings as a unique ecological system in a desert environment. Oecologia 85, 122–127 (1990).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Armas, C., Pugnaire, F. I. & Sala, O. E. Patch structure dynamics and mechanisms of cyclical succession in a Patagonian steppe (Argentina). J. Arid Environ. 72, 1552–1561 (2008).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Pickett, S. & White, P. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985). https://doi.org/10.1016/C2009-0-02952-3.

    Book 

    Google Scholar 

  • 75.

    Segoli, M., Ungar, E. D., Giladi, I., Arnon, A. & Shachak, M. Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands. Landsc. Ecol. 27, 899–910 (2012).

    Article 

    Google Scholar 

  • 76.

    Rodríguez, F., Mayor, Á. G., Rietkerk, M. & Bautista, S. A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics. Ecol. Indic. 94, 512–519 (2018).

    Article 

    Google Scholar 

  • 77.

    Zelnik, Y. R., Kinast, S., Yizhaq, H., Bel, G. & Meron, E. Regime shifts in models of dryland vegetation. Philos. Trans. R. Soc. A https://doi.org/10.1098/rsta.2012.0358 (2013).

    Article 
    MATH 

    Google Scholar 

  • 78.

    Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. PNAS 103, 1342–1346 (2006).

  • 79.

    Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Stavi, I., Yizhaq, H., Szitenberg, A. & Zaady, E. Patch-scale to hillslope-scale geodiversity alleviates susceptibility of dryland ecosystems to climate change: Insights from the Israeli Negev. Curr. Opin. Environ. Sustain. 50, 129–137 (2021).

    Article 

    Google Scholar 

  • 82.

    Loarie, S. R. et al. Climate change and the future of California’s endemic flora. PLoS ONE 3, 2502 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 83.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).

    ADS 
    Article 

    Google Scholar 

  • 85.

    Correa-Metrio, A., Meave, J. A., Lozano-García, S. & Bush, M. B. Environmental determinism and neutrality in vegetation at millennial time scales. J. Veg. Sci. 25, 627–635 (2014).

    Article 

    Google Scholar 

  • 86.

    Baumgartner, J., Esperon-Rodriguez, M. & Beaumont, L. Identifying in situ climate refugia for plant species. Ecography (Cop.) 41, 1850–1863 (2018).

    Article 

    Google Scholar 

  • 87.

    Alahuhta, J. et al. The Role of Geodiversity in Providing Ecosystem Services at Broad Scales (Elsevier, 2018).

    Book 

    Google Scholar 

  • 88.

    Parks, K. E. & Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 19, 2751–2766 (2010).

    Article 

    Google Scholar 

  • 89.

    Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).

    Article 

    Google Scholar 

  • 90.

    Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    Investigating materials for safe, secure nuclear power