in

Genetic diversity and population structure analysis of Lateolabrax maculatus from Chinese coastal waters using polymorphic microsatellite markers

  • 1.

    Jiang, X., Yang, G. P., Wei, Q. W. & Zou, G. W. Analysis of the genetic structure of spotted sea bass (Lateolabrax maculatus) inhabiting the Chinese Coast. Period. Ocean Univ. China 39, 271–274 (2009) (In Chinese with English abstract).

    Google Scholar 

  • 2.

    Clifford, S. L., McGinnity, P. & Ferguson, A. Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can. J. Fish. Aquat. Sci. 55, 358–363 (1998).

    Article 

    Google Scholar 

  • 3.

    Bourret, V., O’Reilly, P. T., Carr, J. W., Berg, P. R. & Bernatchez, L. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106, 500–510 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Hutchings, J. A. & Fraser, D. J. The nature of fisheries- and farming-induced evolution. Mol. Ecol. 17, 294–313 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).

    Article 

    Google Scholar 

  • 6.

    Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytius galloprovincialis) in Central and Eastern Mediterranean: Genesc panmixia in the Aegean and the Ionian Sea. J. Mar. Biol. Assoc. U.K. 94, 797–809 (2014).

    Article 

    Google Scholar 

  • 7.

    Liu, J. X., Gao, T. X., Yokogawa, K. & Zhang, Y. P. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol. 39(3), 799–811 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Hu, Z. M., Gao, T. X., Han, Z. Q. & Song, L. Studies on genetic differentiation of the spotted sea bass (Lateolabrax maculatus) and Japanese sea bass (Lateolabrax japonicus). Period. Ocean Uni. China 37(3), 413–418 (2007) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 9.

    Nakayama, K., Kineshita, I. & Seikai, T. Morphologlcal comparisons during early stage rearing of Chinese and Japanese forms of the temperate bass, Lateolabrax japonicus. Jpn. J. Ichthyol. 43(1), 13–20 (1996).

    Google Scholar 

  • 10.

    Lou, D., Gao, T. X. & Zhang, X. M. The advances on germplasm resources study of Lateolabrax. J. Zhejiang Ocean Univ. (Natural Science) 19(2), 162–167 (2000) (Chinese in English abstract).

    Google Scholar 

  • 11.

    Lou, D. et al. Study on genetic variation in Chinese and Japanese sea bass. Journal of Ocean University of Qingdao 33(1), 22–28 (2003) (In Chinese in English abstract).

    Google Scholar 

  • 12.

    Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. The analysis of genetic variation of Lateolabrax japonicus from Rizhao of Shandong and Xiamen of Fujian by isozyme and RAPD methods. Acta Oceanol. Sin. 27(3), 119–123 (2005) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 13.

    Liu, M. Y., Jiang, Q. C. & Yang, J. X. Analysis on mitochondrial DNA cytochrome b gene of Lateolabrax japonicas from different seas. J. Nanjing Normal Univ. (Natural Science Edition) 33(1), 102–106 (2010) (In Chinese with English abstract).

    Google Scholar 

  • 14.

    Wang, W. et al. Population genetic diversity of Chinese sea bass (Lateolabrax maculatus) from southern coastal regions of China based on mitochondrial COI gene sequences. Biochem. Syst. Ecol. 71, 114–140 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Wang, G. X. et al. Genetic variability in six Lateolabrax maculatus populations inhabiting the Chinese coast. J. Fish. Sci. China 24(2), 395–402 (2017) (In Chinese with English abstract).

    Google Scholar 

  • 16.

    Chapuis, M. P., Loiseau, A., Michalakis, Y., Lecoq, M. & Estoup, A. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Mol. Ecol. Notes 5(3), 554–557 (2005).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Tan, Y., Fang, L., Qiu, M., Huo, Z. M. & Yan, Y. W. Population genetic of the Manila clam (Ruditapes philippinarum) in East Asia. Sci. Rep. 10, 21890 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Agulló, M. et al. Genetic analyses reveal temporal stability and connectivity pattern in blue and red shrimp Aristeus antennatus populations. Sci. Rep. 10, 21505 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    An, H. S., Lee, J. W. & Kim, H. Y. Genetic differences between wild and hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) inferred from microsatellite markers. Genes Genom. 35(5), 671–680 (2013).

    Article 

    Google Scholar 

  • 21.

    An, H. S., Kim, H. Y. & Kim, J. B. Genetic characterization of hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) using multiplex polymerase chain reaction assays. Genet. Mol. Res. 13(3), 6701–6715 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Shaw, P. W., Turan, C., Wright, J. M., O’Connell, M. & Carvalho, G. R. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83, 490–499 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Shao, C. W., Chen, S. L., Xu, G. B., Liao, X. L. & Tian, Y. S. Eighteen novel microsatellite markers for the Chinese sea perch, Lateolabrax maculatus. Conserv. Genet. 10, 623–625 (2009).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Zhang, H. R., Niu, S. F., Wu, R. X., Zhai, Y. & Tian, L. T. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 66, 326–330 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Zhao, Y. et al. Isolation of microsatellite markers for Lateolabrax japonicus and polymorphic analysis. Zool. Res. 32(5), 515–520 (2011) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 26.

    Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Wan, N. W., Rolland, J. L., Bonhomme, F. & Phongdara, A. Population genetic structure of Penaeus merguiensis, Thailand based on nuclear DNA variation. J. Exp. Mar. Biol. Ecol. 311(1), 63–78 (2004).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Xiao, Q. Z. et al. Genetic diversity analysis of wild and cultured megalopa population of Eriocheir sinensis from Yangtze River. Genom. Appl. Biol. 36(5), 1935–1945 (2017) (In Chinese with English abstract).

    Google Scholar 

  • 29.

    Liu, F. et al. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 297, 51–56 (2009).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Halasz, J., Pedryc, A., Ercisli, S., Yilmaz, K. U. & Hegedus, A. S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. J. Am. Soc. Hortic. Sci. 135(5), 410–417 (2010).

    Article 

    Google Scholar 

  • 31.

    Wang, S. H., Zhang, C., Shang, M., Wu, X. G. & Cheng, Y. X. Genetic diversity and population structure of native mitten crab (Eriocheir sensu stricto) by microsatellite markers and mitochondrial COI gene sequence. Gene 693, 101–113 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of genetic variation by isozymes between two stocks of the sea Bass (Lateolabrax japonicus) from Rizhao & Xiamen sea areas, China. J. Zhejiang Ocean Univ. Nat. Sci. 22(2), 121–124 (2003) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 33.

    Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of RAPD genetic variation between two stocks of sea bass (Lateolabrax aponicus) from Shandong Rizhao and Fujian Xiamen sea areas. Oceanol. Limnol. Sin. 34(6), 618–624 (2003) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 34.

    Machado-Schiaffino, G. & Garcia-Vazquez, E. Isolation and characterization of microsatellite loci in Merluccius australis and cross-species amplification. Mol. Ecol. Resour. 9(2), 585–587 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Freeland, J. R. Molecular ecology 112–116 (Wiley, Chichester, 2005).

    Google Scholar 

  • 36.

    Li, D. Y., Yin, Q. Q., Hou, N., Sun, X. W. & Liang, L. Q. Genetic diversity of different ecologo-geographical populations of yellow catfish Pelteobagrus eupogon. Oceanol. Limnol. Sin. 40(4), 460–469 (2009) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 37.

    Shoji, J. & Tanaka, M. Influence of spring river flow on the recruitment of Japanese sea perch Lateolabrax japonicus into the Chikugo estuary, Japan. . Sci. Mar. 70(2), 159–164 (2006).

    Article 

    Google Scholar 

  • 38.

    Liu, B., Kuang, Y. Y., Tong, G. X. & Yin, J. S. Analysis of genetic diversity on 9 wild stocks of Taimen (Hucho taimen) by microsatellite markers. Zool. Res. 32(6), 597–604 (2011) (In Chinese with English abstract).

    CAS 

    Google Scholar 

  • 39.

    Clegg, S. M. et al. Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA 99, 8127–8132 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Pruett, C. L. & Winker, K. Northwestern song sparrow populations show genetic effects of sequential colonization. Mol. Ecol. 14, 1421–1434 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    An, H. S. et al. Population genetic structure of the sea bass (Lateolabrax japonicus) in Korea based on multiplex PCR assays with 12 polymorphic microsatellite markers. Genes Genom. 36, 247–259 (2014).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. M. & Shipley, P. F. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).

    MathSciNet 
    MATH 

    Google Scholar 

  • 44.

    Raymond, M. & Rousset, F. GENEPOP (version 12): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Article 

    Google Scholar 

  • 45.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    Wang, S. H. et al. Identification and genetic diversity analysis of Chinese mitten crab (Eriocheir sinensis) in the Liao river area. J. Northeast. Agric. Univ. 25, 43–53 (2018).

    Google Scholar 

  • 47.

    Tamura, K. et al. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 111, 675–689 (1985).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multi locus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Jombart, T. Adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    Investigating materials for safe, secure nuclear power