in

Microbial drivers of methane emissions from unrestored industrial salt ponds

  • 1.

    Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, et al. The value of the world’s ecosystem services and natural capital. Ecol Econ. 1998;25:3–15.

    Article 

    Google Scholar 

  • 2.

    Grimsditch G, Alder J, Nakamura T, Kenchington R, Tamelander J. The blue carbon special edition—introduction and overview. Ocean Coast Manag. 2013;83:1–4.

    Article 

    Google Scholar 

  • 3.

    Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change. 2013;3:961–8.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ. 2011;9:552–60.

    Article 

    Google Scholar 

  • 5.

    Neef L, Weele M van, Velthoven P van. Optimal estimation of the present-day global methane budget. Glob Biogeochem Cycles. 2010;24:GB4024.

  • 6.

    Schlesinger WH, Bernhardt ES. Biogeochemistry: an analysis of global change. 3rd ed. Waltham, MA: Academic Press; 2013.

  • 7.

    Lessner DJ. Methanogenesis biochemistry. eLS. John Wiley & Sons, Hoboken, NJ, USA; 2009.

  • 8.

    Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.

    Article 

    Google Scholar 

  • 9.

    Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere. 2015;6:art206.

    Article 

    Google Scholar 

  • 10.

    Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, et al. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci. 2011;4:2669–81.

    Article 

    Google Scholar 

  • 11.

    Kristjansson JK, Schönheit P. Why do sulfate-reducing bacteria outcompete methanogenic bacteria for substrates? Oecologia. 1983;60:264–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF. Aerobic production of methane in the sea. Nat Geosci. 2008;1:473–8.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Mcgenity T, Sorokin D. Methanogens and methanogenesis in hypersaline environments. Biogenesis of hydrocarbons. Springer International Publishing, New York, NY, USA; 2018. p. 1–27.

  • 14.

    Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD, Acker M, et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci. 2016;9:884–7.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Oremland RS, Polcin S. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol. 1982;44:1270–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    van der Gon HACD, Neue H-U. Methane emission from a wetland rice field as affected by salinity. Plant Soil. 1995;170:307–13.

    Article 

    Google Scholar 

  • 17.

    Gómez-Villegas P, Vigara J, León R. Characterization of the microbial population inhabiting a solar saltern pond of the Odiel Marshlands (SW Spain). Mar Drugs. 2018;16:332.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol. 2006;72:3685–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Thombre RS, Shinde VD, Oke RS, Dhar SK, Shouche YS. Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Sci Rep. 2016;6:25642.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Takekawa JY, Miles AK, Schoellhamer DH, Athearn ND, Saiki MK, Duffy WD, et al. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary. Hydrobiologia. 2006;567:307–27.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Ver Planck WE. Salt in California. State of California Deparment of Natural Resources, Division of Mines. Mines Bull 175. San Francisco, CA, USA: 1958.

  • 22.

    Johnck EJ. The South Bay Salt Pond Restoration Project: a cultural landscape approach for the resource management plan. Sonoma State University, Rohnert Park, CA, USA; 2008.

  • 23.

    Ackerman JT, Marvin-DiPasquale M, Slotton D, Eagles-Smith CA, Hartman A, Agee JL, et al. The South Bay Mercury Project: using biosentinels to monitor effects of wetland restoration for the South Bay Salt Pond Restoration Project. South Bay Salt Pond Restoration Project and Resources Legacy Fund, San Francisco, CA, USA; 2013.

  • 24.

    Valoppi L. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California. Reston, VA: U.S. Geological Survey; 2018.

  • 25.

    Callaway JC, Parker VT, Vasey MC, Schile LM, Herbert ER. Tidal wetland restoration in San Francisco Bay: history and current issues. San Franc Estuary Watershed Sci. 2011;9: Article 2.

  • 26.

    Cargill. San Francisco Bay salt ponds. Cargill, Newark, CA, USA; 2020. https://www.cargill.com/page/sf/sf-bay-salt-ponds.

  • 27.

    Levey JR, Vasicek P, Fricke H, Archer J, Henry RF. Salt pond SF2 restoration, wildlife, and habitat protection. American Society of Civil Engineers, Reston, VA; 2012.520−9.

  • 28.

    Dugan HA, Summers JC, Skaff NK, Krivak-Tetley FE, Doubek JP, Burke SM, et al. Long-term chloride concentrations in North American and European freshwater lakes. Sci Data. 2017;4:170101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, et al. Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 2015;6:771.

  • 30.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. A naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5264−67.

  • 32.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:24175.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation, and scoring strategy. Nat Microbiol. 2018;3:836–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife. 2017;6:e26580.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:217.

    Article 
    CAS 

    Google Scholar 

  • 46.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan.

  • 47.

    Vu VQ. ggbiplot: a ggplot2 based biplot. R package version 0.55. 2011. http://github.com/vqv/ggbiplot.

  • 48.

    De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Prestat E, David MM, Hultman J, Taş N, Lamendella R, Dvornik J, et al. FOAM (functional ontology assignments for metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic Acids Res. 2014;42:e145.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Liu J, Cade-Menun BJ, Yang J, Hu Y, Liu CW, Tremblay J, et al. Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils. Front Microbiol. 2018;9:1643.

  • 51.

    Manor O, Borenstein E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biol. 2015;16:53.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci USA. 2002;99:7821–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Jurasinski G, Koebsch F, Guenther A, Beetz S. flux: flux rate calculation from dynamic closed chamber measurements. R package version 0.3-0. 2014. https://CRAN.R-project.org/package=flux.

  • 55.

    Culkin F, Smith N. Determination of the concentration of potassium chloride solution having the same electrical conductivity, at 15 °C and infinite frequency, as standard seawater of salinity 35.0000 ‰ (chlorinity 19.37394 ‰). IEEE J Ocean Eng. 1980;5:22–23.

    Article 

    Google Scholar 

  • 56.

    Kuever J. The Family Desulfohalobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 87–95.

  • 57.

    López-Pérez M, Rodriguez-Valera F. The Family Alteromonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 69–92.

  • 58.

    Oren A. The Order Halanaerobiales, and the Families Halanaerobiaceae and Halobacteroidaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Firmicutes and Tenericutes. Berlin, Heidelberg: Springer; 2014. p. 153−77.

  • 59.

    Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The Family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 439–512.

  • 60.

    Kuever J. The Family Desulfobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 45–73.

  • 61.

    Kuever J. The Family Desulfobulbaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 75–86.

  • 62.

    Kuever J. The Family Syntrophobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 289−99.

  • 63.

    Oren A. The Family Methanosarcinaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014. p. 259−81.

  • 64.

    Bonin AS, Boone DR. The Order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds). The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes. New York, NY: Springer; 2006. p. 231−43.

  • 65.

    Kathuria S, Martiny AC. Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. Environ Microbiol. 2011;13:74–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Kamat SS, Williams HJ, Dangott LJ, Chakrabarti M, Raushel FM. The catalytic mechanism for aerobic formation of methane by bacteria. Nature. 2013;497:132–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Yu X, Doroghazi JR, Janga SC, Zhang JK, Circello B, Griffin BM, et al. Diversity and abundance of phosphonate biosynthetic genes in nature. Proc Natl Acad Sci USA. 2013;110:20759–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.

  • 69.

    Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science. 2012;337:1104–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Poffenbarger HJ, Needelman BA, Megonigal JP. Salinity influence on methane emissions from tidal marshes. Wetlands. 2011;31:831–42.

    Article 

    Google Scholar 

  • 71.

    Oremland RS, Boone DR. Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol. 1994;44:573–5.

    Article 

    Google Scholar 

  • 72.

    Zhang G, Jiang N, Liu X, Dong X. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige Wetland of the Tibetan Plateau. Appl Environ Microbiol. 2008;74:6114–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Antony CP, Murrell JC, Shouche YS. Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol. 2012;81:43–51.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    König H, Stetter KO. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralblatt Für Bakteriol Mikrobiol Hyg Abt Orig C Allg Angew Ökol Mikrobiol. 1982;3:478–90.

    Google Scholar 

  • 75.

    Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG. Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol. 2009;59:1064–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Ni S, Boone DR. Isolation and characterization of a dimethyl sulfide-degrading methanogen, methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol. 1991;41:410–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, et al. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol. 2009;59:714–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, et al. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology. 2008;6:376–93.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Smith JM, Green SJ, Kelley CA, Prufert‐Bebout L, Bebout BM. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol. 2008;10:386–94.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Zhuang G-C, Elling FJ, Nigro LM, Samarkin V, Joye SB, Teske A, et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta. 2016;187:1–20.

    CAS 
    Article 

    Google Scholar 

  • 81.

    Zhuang G-C, Heuer VB, Lazar CS, Goldhammer T, Wendt J, Samarkin VA, et al. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta. 2018;224:171–86.

    CAS 
    Article 

    Google Scholar 

  • 82.

    Oremland RS, Marsh LM, Polcin S. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature. 1982;296:143–5.

    CAS 
    Article 

    Google Scholar 

  • 83.

    Wanner BL, Metcalf WW. Molecular genetic studies of a 10.9 kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett. 1992;100:133–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature. 2006;439:68–71.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    White AK, Metcalf WW. Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol. 2007;61:379–400.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Carini P, White AE, Campbell EO, Giovannoni SJ. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun. 2014;5:4346.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Damm E, Helmke E, Thoms S, Schauer U, Nothig E, Bakker K, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences. 2010;7:1099–108.

    CAS 
    Article 

    Google Scholar 

  • 88.

    Martínez A, Ventouras L-A, Wilson ST, Karl DM, Delong EF. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol. 2013;4:340.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Yao M, Henny C, Maresca JA. Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol. 2016;82:6994–7003.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Sosa OA, Repeta DJ, DeLong EF, Ashkezari MD, Karl DM. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation. Environ Microbiol. 2019;21:2402–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Fisher J, Acreman MC. Wetland nutrient removal: a review of evidence. Hydrol Earth Syst Sci Discuss Eur Geosci Union. 2004;8:673–85.

    CAS 
    Article 

    Google Scholar 

  • 92.

    Kadlec RH. Constructed marshes for nitrate removal. Crit Rev Environ Sci Technol. 2012;42:934–1005.

    CAS 
    Article 

    Google Scholar 

  • 93.

    He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, et al. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio. 2015;6:e00066–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    What will happen to sediment plumes associated with deep-sea mining?

    A new approach to preventing human-induced earthquakes