Fuller, A. et al. Physiological mechanisms in coping with climate change. Phys. Biochem. Zool. 83, 713–720. https://doi.org/10.1086/652242 (2010).
Google Scholar
Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: Conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. B 367, 1628–1646. https://doi.org/10.1098/rstb.2012.0007 (2012).
Google Scholar
Tracy, C. R. et al. The importance of physiological ecology in conservation biology. Integr. Comp. Biol. 46, 1191–1205. https://doi.org/10.1093/icb/icl054 (2006).
Google Scholar
Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69. https://doi.org/10.1111/j.1365-2435.2009.01528.x (2009).
Google Scholar
Morris, J. G. Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Rev. 15, 153–168. https://doi.org/10.1079/NRR200238 (2002).
Google Scholar
Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 78, 443–457. https://doi.org/10.1007/BF00378733 (1989).
Google Scholar
Rode, K. D., Chapman, C. A., McDowell, L. R. & Stickler, C. Nutritional correlates of population density across habitats and logging intensities in redtail monkeys (Cercopithecus Ascanius). Biotropica 38, 625–634. https://doi.org/10.1111/j.1744-7429.2006.00183.x (2006).
Google Scholar
Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Cons Phys. 5, cox030. https://doi.org/10.1093/conphys/cox030 (2017).
Google Scholar
Rode, K. D. & Robbins, C. T. Why bears consume mixed diets during fruit abundance. Can. J. Zool. 78, 1640–1645. https://doi.org/10.1139/z00-082 (2000).
Google Scholar
Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1683. https://doi.org/10.1111/j.0030-1299.2007.16140.x (2007).
Google Scholar
Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. Macronutrient optimization and energy maximization determine diets of brown bears. J. Mamm. 95, 160–168. https://doi.org/10.1644/13-MAMM-A-161 (2014).
Google Scholar
Nie, Y. et al. Giant pandas are macronutritional carnivores. Curr. Biol. 29, 1677–1682. https://doi.org/10.1016/j.cub.2019.03.067 (2019).
Google Scholar
Sponheimer, M., Clauss, M. & Codron, D. Dietary evolution: The panda paradox. Curr. Biol. 29, R417–R419. https://doi.org/10.1016/j.cub.2019.04.045 (2019).
Google Scholar
Stirling, I. & McEwan, E. H. The caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Can. J. Zool. 53, 1021–1027. https://doi.org/10.1139/z75-117 (1975).
Google Scholar
Liu, S. P. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in Polar Bears. Cell 157, 785–794. https://doi.org/10.1016/j.cell.2014.03.054 (2014).
Google Scholar
Kohl, K. D., Coogan, S. C. P. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrient? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701–709. https://doi.org/10.1002/bies.201400171 (2015).
Google Scholar
Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387. https://doi.org/10.1146/annurev-marine-010318-095411 (2020).
Google Scholar
Hewson-Hughes, A. K., Colyer, A., Simpson, S. J. & Raubenheimer, D. Balancing macronutrient intake in a mammalian carnivore: Disentangling the influences of flavor and nutrition. R. Soc. Open 3, 160081. https://doi.org/10.1098/rsos.160081 (2016).
Google Scholar
McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633. https://doi.org/10.1002/ecs2.1633 (2017).
Google Scholar
Rode, K. D. et al. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. Glob. Change Biol. 24, 410–423. https://doi.org/10.1111/gcb.13933 (2018).
Google Scholar
Rode, K. D. et al. Variation in the response of an arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations. Glob. Change Biol. 20, 76–88. https://doi.org/10.1111/gcb.12339 (2014).
Google Scholar
Rode, K. D. et al. Seal body condition and atmospheric circulation patterns in the Chukchi Sea influence polar bear body condition, recruitment, and feeding ecology. Glob. Change Biol. https://doi.org/10.1111/gcb.15572 (2021).
Google Scholar
Yurkowski, D. J., Hussey, N. E., Semeniuk, C., Ferguson, S. H. & Fisk, A. T. Effects of fat extraction and the utility of fat normalization models on δ13C and δ15N values in Arctic marine mammal tissues. Pol. Biol. 38, 131–143. https://doi.org/10.1007/s00300-014-1571-1 (2014).
Google Scholar
Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630. https://doi.org/10.1139/z99-133 (1999).
Google Scholar
McCullough, D. R. & Ullrey, D. E. Proximate mineral and gross energy composition of white-tailed deer. J. Wildl. Manag. 47, 430–441. https://doi.org/10.2307/3808516 (1983).
Google Scholar
Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651. https://doi.org/10.1139/z90-244 (1990).
Google Scholar
LaDouceur, E. E. B., Garner, M. M., Davis, B. & Tseng, F. A retrospective study of end-stage renal disease in captive polar bears (Ursus maritimus). J. Zoo Wildl. Med. 45, 69–77. https://doi.org/10.1638/2013-0071R.1 (2014).
Google Scholar
Derocher, A. E. & Stirling, I. Aspects of survival in juvenile polar bears. Can. J. Zool. 74, 1246–1252. https://doi.org/10.1139/z96-138 (1996).
Google Scholar
Hedberg, G. E. et al. Milk composition in free-ranging polar bears (Ursus maritimus) as a model for captive rearing milk formula. Zoo Biol. 30, 550–565. https://doi.org/10.1002/zoo.20375 (2011).
Google Scholar
Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–1233. https://doi.org/10.1017/S0007114514001664 (2014).
Google Scholar
Rosen, D. A. S. & Trites, A. W. Examining the potential for nutritional stress in young Stellar sea lions: Physiological effects of prey composition. J. Comp. Phys. B 175, 265–273. https://doi.org/10.1007/s00360-005-0481-5 (2005).
Google Scholar
Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive juvenile harp seals (Phoca groenlandica). Phys. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).
Google Scholar
Zhao, L., Schell, D. M. & Castellini, M. A. Dietary macronutrients influence 13C and 15N signatures of pinnipeds: Captive feeding studies with harbor seals (Phoca vitulina). Physiol. Part A Mol. Integr. Phys. 143, 469–478. https://doi.org/10.1016/j.cbpa.2005.12.032 (2006).
Google Scholar
Diaz Gomez, M., Rosen, D. A. S. & Trites, A. W. Net energy gained by northern fur seals (Callorhinus ursinus) is impacted more by diet quality than diet diversity. Can. J. Zool. 94, 12–135. https://doi.org/10.1139/cjz-2015-0143 (2016).
Google Scholar
Le Bellego, L., van Milgen, J. & Noblet, J. Effect of high temperature and low-protein diets on performance of growing pigs. J. Anim. Sci. 79, 1259–1271. https://doi.org/10.2527/2001.7951259x (2002).
Google Scholar
Anton, S. D. et al. Effects of popular diets without specific calorie targets on weight loss outcomes: Systematic review of findings from clinical trials. Nutrients 9, 822. https://doi.org/10.3390/nu9080822 (2017).
Google Scholar
Bininda-Emonds, O. R. P., Gittleman, J. L. & Purvis, A. Building large trees by combining phylogenetic information: A complete phylogeny of the extant Carnivora (Mammalia). Biol. Rev. 74, 143–175. https://doi.org/10.1017/S0006323199005307 (1999).
Google Scholar
Plantinga, E. A., Bosch, G. & Hendriks, W. H. Estimation of the dietary nutrient profile of free-roaming feral cats: Possible implications for nutrition of domestic cats. Br. J. Nutr. 106, S35–S48. https://doi.org/10.1017/S0007114511002285 (2011).
Google Scholar
Hewson-Hughes, A. K. et al. Geometric analysis of macronutrient selection in breeds of the domestic dog, Canis lupus familiaris. Behav. Ecol. 24, 293–304. https://doi.org/10.1093/beheco/ars168 (2013).
Google Scholar
Trites, A. W. & Donnelly, C. P. The decline of Steller sea lions Eumetopias jubatus in Alaska: A review of the nutritional stress hypothesis. Mamm. Rev. 33, 3–28. https://doi.org/10.1046/j.1365-2907.2003.00009.x (2003).
Google Scholar
Hauser, D. D. W., Allen, C. S., Rich, H. B. Jr. & Quinn, T. P. Resident harbor seals (Phoca vitulina) in Iliamna Lake, Alaska: Summer diet and partial consumption of adult sockeye salmon (Oncorhynchus nerka). Aquat. Mamm. 34, 303–309. https://doi.org/10.1578/AM.34.3.2008.303 (2008).
Google Scholar
Jia, Y. et al. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 140, 1646–1652. https://doi.org/10.3945/jn.110.123034 (2010).
Google Scholar
Wakefield, A. P., House, J. D., Ogborn, M. R., Weiler, H. A. & Aukema, H. M. A diet of 35% of energy from protein leads to kidney damage in female Sprague–Dawley rats. Br. J. Nutr. 106, 656–663. https://doi.org/10.1017/S0007114511000730 (2011).
Google Scholar
Ko, G.-J., Rhee, C. M., Kalantar-Zadeh, K. & Joshi, S. The effects of high-protein diets on kidney health and longevity. J. Am. Soc. Nephrol. 31, 1667–1679. https://doi.org/10.1681/ASN.2020010028 (2020).
Google Scholar
Bӧswald, L. F., Kienzle, E. & Dobenecker, B. Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J. Phys. Anim. Nutr. 102, 31–36. https://doi.org/10.1111/jpn.12886 (2017).
Google Scholar
Ioannou, G. N., Morrow, O. B., Connole, M. L. & Lee, S. P. Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the united states population. Hepatology 50, 175–184. https://doi.org/10.1002/hep.22941 (2009).
Google Scholar
Tryland, M. et al. Plasma biochemical values from apparently healthy free-ranging polar bears from Svalbard. J. Wildl. Dis. 38, 566–575. https://doi.org/10.7589/0090-3558-38.3.566 (2002).
Google Scholar
Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and Arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr. 78, 591–613. https://doi.org/10.1890/07-1050.1 (2008).
Google Scholar
Ryg, M., Smith, T. G. & Oritsland, N. A. Seasonal changes in body mass and body composition of ringed seals (Phoca hispida) on Svalbard. Can. J. Zool. 68, 470–475. https://doi.org/10.1139/z90-069 (1990).
Google Scholar
Ferguson, S. H. et al. Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability. Peer J. 5, e2957. https://doi.org/10.7717/peerj.2957 (2017).
Google Scholar
Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS One 11, 30155932. https://doi.org/10.1371/journal.pone.0155932 (2016).
Google Scholar
Molnar, P. K. et al. Fasting season length sets temporal limits for global polar bear persistence. Nat. Clim. Change 10, 732–738. https://doi.org/10.1038/s41558-020-0818-9 (2020).
Google Scholar
Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?. Front. Ecol. Environ. 13, 138–145. https://doi.org/10.1890/140202 (2015).
Google Scholar
McArt, S. H. et al. Summer nitrogen availability as a bottom-up constraint on moose in south-central Alaska. Ecology 90, 1400–1411. https://doi.org/10.1890/08-1435.1 (2009).
Google Scholar
Lahtinen, M., Clinnick, D., Mannermaa, K., Salonen, J. S. & Viranta, S. Excess protein enabled dog domestication during severe Ice Age winters. Sci. Rep. 11, 7. https://doi.org/10.1038/s41598-020-78214-4 (2021).
Google Scholar
Regehr, E. V., Hostetter, N. J., Wilson, R. R. & Rode, K. D. Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Sci. Rep. 8, 16780. https://doi.org/10.1038/s41598-018-34824-7 (2018).
Google Scholar
Crawford, J. A., Quakenbush, L. T. & Citta, J. J. A comparison of ringed seal and bearded seal diet, condition, and productivity between historical (1975–19480 and recent (2003–2012) periods in the Alaskan Bering and Chukchi Seas. Progr. Oceanogr. 136, 133–150. https://doi.org/10.1016/j.pocean.2015.05.011 (2015).
Google Scholar
Germain, L. R., McCarthy, M. D., Koch, P. L. & Harvey, J. T. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Mar. Mamm. Sci. 28, 542–560. https://doi.org/10.1111/j.1748-7692.2011.00516.x (2011).
Google Scholar
Erlenbach, J. A. Nutritional and landscape ecology of brown bears (Ursus arctos). PhD dissertation. Washington State University, Pullman, WA, USA (2020).
Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524. https://doi.org/10.1002/fee.1963 (2018).
Google Scholar
Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Mar. Mamm. Sci. 22, 556–572. https://doi.org/10.1111/j.1748-7692.2006.00043.x (2006).
Google Scholar
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracker mixing models. Peer J. 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).
Google Scholar
Rode, K. D. et al. Isotopic incorporation and the effects of fasting and dietary fat content on isotopic discrimination in large carnivorous mammals. Phys. Biochem. Zool. 89, 182–197. https://doi.org/10.1086/686490 (2016).
Google Scholar
Merrill, A. L. & Watt, B. K. Energy Value of Foods: Basis and Derivation, Revised. Agriculture Handbook 74 (United States Department of Agriculture, 1973).
Dyck, M. G. & Morin, P. In vivo digestibility trials of a captive polar bear (Ursus maritimus) feeding on harp seal (Pagophilus growenlandicus) and Arctic charr (Salvelinus alpinus). Pak. J. Zool. 43, 759–767 (2011).
Google Scholar
Source: Ecology - nature.com