in

Colour and motion affect a dune wasp’s ability to detect its cryptic spider predators

  • 1.

    Smith, M. Q. R. P. & Ruxton, G. D. Camouflage in predators. Biol. Rev. 63, 178–216 (2020).

    Google Scholar 

  • 2.

    Anderson, A. G. & Dodson, G. N. Colour change ability and its effect on prey capture success in female Misumenoides formosipes crab spiders. Ecol. Entomol. 40, 106–113 (2015).

    Article 

    Google Scholar 

  • 3.

    Gonzálvez, F. G. & Rodríguez-Gironés, M. A. Seeing is believing: information content and behavioural response to visual and chemical cues. Proc. R. Soc. Lond. Ser. B Biol. Sci. 280, 20130886–20130888 (2013).

    Google Scholar 

  • 4.

    Schwantes, C. J., Carper, A. L. & Bowers, M. D. Solitary floral specialists do not respond to cryptic flower-occupying predators. J. Insect Behav. 31, 642–655 (2018).

    Article 

    Google Scholar 

  • 5.

    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, Princeton, 2014).

    Book 

    Google Scholar 

  • 6.

    Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).

    Article 

    Google Scholar 

  • 7.

    Burnett, N. P., Badger, M. A. & Combes, S. A. Wind and obstacle motion affect honeybee flight strategies in cluttered environments. J. Exp. Biol. 223, jeb222471-9 (2020).

    Google Scholar 

  • 8.

    Hennessy, G. et al. Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 161, 23–31 (2020).

    Article 

    Google Scholar 

  • 9.

    Thery, M. & Casas, J. The multiple disguises of spiders: web colour and decorations, body colour and movement. Philos. Trans. R. Soc. B Biol. Sci. 364, 471–480 (2009).

    Article 

    Google Scholar 

  • 10.

    Oxford, G. & Gillespie, R. Evolution and ecology of spider coloration. Annu. Rev. Entomol. 43, 619–643 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Rodríguez-Morales, D. et al. Context-dependent crypsis: a prey’s perspective of a color polymorphic predator. Sci. Nat. 105, 81 (2018).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Gavini, S. S., Quintero, C. & Tadey, M. Ecological role of a flower-dwelling predator in a tri-trophic interaction in northwestern Patagonia. Acta Oecol. 95, 100–107 (2019).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Morse, D. H. Predatory risk to insects foraging at flowers. Oikos 46, 223–228 (1986).

    Article 

    Google Scholar 

  • 14.

    Brechbuhl, R., Casas, J. & Bacher, S. Ineffective crypsis in a crab spider: a prey community perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 277, 739–746 (2010).

    Google Scholar 

  • 15.

    Rodríguez-Gironés, M. A. & Maldonado, M. Detectable but unseen: imperfect crypsis protects crab spiders from predators. Anim. Behav. 164, 83–90 (2020).

    Article 

    Google Scholar 

  • 16.

    Heiling, A., Herberstein, M. & Chittka, L. Pollinator attraction: crab-spiders manipulate flower signals. Nature 421, 334–334 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Llandres, A. L. & Rodríguez-Gironés, M. A. Spider movement, UV reflectance and size, but not spider Crypsis, affect the response of honeybees to Australian crab spiders. PLoS ONE 6, e17136–e17211 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Vieira, C., Ramires, E. N., Vasconcellos-Neto, J., Poppi, R. J. & Romero, G. Q. Crab spider lures prey in flowerless neighborhoods. Sci. Rep. 7, 1–7 (2017).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Robertson, I. C. & Maguire, D. K. Crab spiders deter insect visitations to slickspot peppergrass flowers. Oikos 109, 577–582 (2005).

    Article 

    Google Scholar 

  • 20.

    Yokoi, T. & Fujisaki, K. Hesitation behaviour of hoverflies Sphaerophoria spp. to avoid ambush by crab spiders. Sci. Nat. 96, 195–200 (2008).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Defrize, J., Thery, M. & Casas, J. Background colour matching by a crab spider in the field: a community sensory ecology perspective. J. Exp. Biol. 213, 1425–1435 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Reader, T., Higginson, A. D., Barnard, C. J. & Gilbert, F. S. The effects of predation risk from crab spiders on bee foraging behavior. Behav. Ecol. 17, 933–939 (2006).

    Article 

    Google Scholar 

  • 23.

    Ings, T. & Chittka, L. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 18, 1520–1524 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Ings, T. C., Wang, M. Y. & Chittka, L. Colour-independent shape recognition of cryptic predators by bumblebees. Behav. Ecol. Sociobiol. 66, 487–496 (2011).

    Article 

    Google Scholar 

  • 25.

    Collett, T. S. & Zeil, J. Flights of learning. Curr. Dir. Psychol. Sci. 5, 149–155 (1996).

    Article 

    Google Scholar 

  • 26.

    Stürzl, W., Zeil, J., Boeddeker, N. & Hemmi, J. M. How wasps acquire and use views for homing. Curr. Biol. 26, 470–482 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Zeil, J., Kelber, A. & Voss, R. Structure and function of learning flights in bees and wasps. J. Exp. Zool. A Ecol. Genet. Physiol. 199, 245–252 (1996).

    CAS 

    Google Scholar 

  • 28.

    Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., & Lindemann, J. P. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front. Neural Circuits. 6, 1–23 (2012).

    Article 

    Google Scholar 

  • 29.

    Lehrer, M. Small-scale navigation in the honeybee: active acquisition of visual information about the goal. J. Evol. Biol. 199, 253–261 (1996).

    CAS 

    Google Scholar 

  • 30.

    Lehrer, M. & Campan, R. Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190, 1–13 (2004).

    Article 

    Google Scholar 

  • 31.

    Nityananda, V., Skorupski, P. & Chittka, L. Can bees see at a glance?. J. Exp. Biol. 217, 1933–1939 (2014).

    PubMed 

    Google Scholar 

  • 32.

    Kral, K. & Poteser, M. Motion parallax as a source of distance information in locusts and mantids. J. Insect Behav. 10, 145–163 (1997).

    Article 

    Google Scholar 

  • 33.

    Dukas, R. Effects of predation risk on pollinators and plants. in Cognitive ecology of pollination 214–236 (Cambridge University Press, Cambridge, 2019).

    Google Scholar 

  • 34.

    Rodríguez-Morales, D. et al.. Response of flower visitors to the morphology and color of crab spiders in a coastal environment of the Gulf of Mexico. Isr. J. Ecol. Evol. 66, 32–40 (2019).

    Article 

    Google Scholar 

  • 35.

    Uexküll, J. V. A Foray Into the Worlds of Animals and Humans: With a Theory of Meaning Vol. 12 (University of Minnesota Press, Minnesota, 2013).

    Google Scholar 

  • 36.

    Caves, E. M., Nowicki, S. & Johnsen, S. V. Uexküll revisited: addressing human biases in the study of animal perception. Integr. Comp. Biol. 215, 1184–1212 (2019).

    Google Scholar 

  • 37.

    Álvarez-Molina, L. L. et al. Biological flora of coastal dunes and wetlands: Palafoxia lindenii A. Gray. J. Coast. Res. 29, 680–693 (2013).

    Google Scholar 

  • 38.

    Evans, H. E., O’Neill, K. M. & Evans, H. E. The Sand Wasps: Natural History and Behavior (Harvard University Press, Harvard, 2009).

    Google Scholar 

  • 39.

    Alcock, J. & Ryan, A. F. The behavior of microbembex nigrifons. Pan-Pac. Entomol. 49, 144–148 (1973).

    Google Scholar 

  • 40.

    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Peitsch, D. et al. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 170, 23–40 (1992).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Feller, K. D. et al. Surf and turf vision: patterns and predictors of visual acuity in compound eye evolution. Arthropod Struct. Dev. 60, 101002 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2019).

    Article 

    Google Scholar 

  • 45.

    Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    McLean, D. J. & Volponi, M. A. S. trajr: An R package for characterisation of animal trajectories. Ethology 124, 440–448 (2018).

    Article 

    Google Scholar 

  • 47.

    Fu, A.W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A. & Wong, R.C.-W. Scaling and time warping in time series querying. VLDB J. 17, 899–921 (2008).

    Article 

    Google Scholar 

  • 48.

    Hu, B., Chen, Y., & Keogh, E. Time series classification under more realistic assumptions. in Proceedings of the 2013 SIAM international conference on data mining 578–586 (Society for Industrial and Applied Mathematics, 2013).

    Google Scholar 

  • 49.

    Keogh, E. & Ratanamahatana, C. A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7, 358–386 (2005).

    Article 

    Google Scholar 

  • 50.

    Pewsey, A., Neuhäuser, M. & Ruxton, G. D. Circular Statistics in R (Oxford University Press, Oxford, 2013).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Inaugural fund supports early-stage collaborations between MIT and Jordan