in

Habitat suitability mapping of the black coral Leiopathes glaberrima to support conservation of vulnerable marine ecosystems

  • 1.

    Bo, M. et al. Characteristics of a black coral meadow in the twilight zone of the Central Mediterranean Sea. Mar. Ecol. Prog. Ser. 397, 53–61 (2009).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Fabri, M. et al. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep Sea Res. Part II Top. Stud. Oceanogr. 104, 184–207 (2014).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Opresko, D. M. & Baron-Szabo, R. Re-descriptions of the antipatharian corals described by E. J. C. ESPER with selected English translations of the original German text (Cnidaria, Anthozoa, Antipatharia). Senckenb. Biol. 81, 1–21 (2019).

    Google Scholar 

  • 4.

    Molodstova, T. N. Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Antipatharia. Invertebr. Zool. 11, 3–7 (2014).

    Article 

    Google Scholar 

  • 5.

    IUCN. No Title. (2020). Available at: http://www.iucn.it/scheda.php?id=-512293580. Accessed: 27th August 2020.

  • 6.

    Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. 19 Occurrence and Biogeography of Mediterranean Cold-Water Corals. (2019). https://doi.org/10.1007/978-3-319-91608-8_19

  • 7.

    Bo, M. et al. Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia). PLoS ONE 10, 1–21 (2015).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Cau, A. et al. Leiopathes glaberrima millennial forest from SW Sardinia as nursery ground for the small spotted catshark Scyliorhinus canicula. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 731–735 (2017).

    Article 

    Google Scholar 

  • 9.

    D’Onghia, G. Cold-water corals as shelter, feeding and life-history critical habitats for fish species: Ecological interactions and fishing impact. In Mediterranean cold-water corals: Past, present and future (eds. Covadonga, O. & Jiménez, C.) 335–356 (Springer, 2019).

  • 10.

    Etnoyer, P. J. et al. Models of habitat suitability, size, and age-class structure for the deep-sea black coral Leiopathes glaberrima in the Gulf of Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 150, 218–228 (2018).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Vitale, S. et al. Black coral age and growth validation using 14C dating in the central Mediterranean Sea. In 2nd international radiocarbon in the environment conference (2017).

  • 12.

    Carlier, A. et al. Trophic relationships in a deep mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian sea). Mar. Ecol. Prog. Ser. 397, 125–137 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Wagner, D., Luck, D. G. & Toonen, R. J. The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia. Adv. Mar. Biol. 63, 67–132 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Bo, M. et al. Deep coral oases in the South Tyrrhenian Sea. PLoS ONE 7, e49870 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Mytilineou, C., Smith, C., Anastasopoulou, A., Papadopoulou, K. & Christidis, G. New cold-water coral occurrences in the Eastern Ionian Sea: Results from experimental long line fishing. Deep. Res. Part I Oceanogr. Res. Pap. 99, 146–157 (2014).

    ADS 

    Google Scholar 

  • 16.

    Angeletti, L. et al. First report of live deep water cnidarian assemblages from the Malta Escarpment. Ital. J. Zool. 82, 291–297 (2015).

    Google Scholar 

  • 17.

    Costantini, F., Fauvelot, C. & Abbiati, M. Fine-scale genetic structuring in Corallium rubrum: Evidence of inbreeding and limited effective larval dispersal. Mar. Ecol. Prog. Ser. 340, 109–119 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Miller, K. Short-distance dispersal of black coral larvae:inference from spatial analysis of colony genotypes. Mar. Ecol. Prog. Ser. 171, 225–233 (1998).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Bo, M. et al. The coral assemblages of an off-shore deep Mediterranean rocky bank (NW Sicily, Italy). Mar. Ecol. 35, 332–342 (2014).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Conserv. 171, 167–176 (2014).

    Article 

    Google Scholar 

  • 21.

    Deidun, A., Tsounis, G., Balzan, F. & Micallef, A. Records of black coral (Antipatharia) and red coral (Corallium rubrum) fishing activities in the Maltese Islands. Mar. Bioldivers. Rec. 3, 1–6 (2010).

    Article 

    Google Scholar 

  • 22.

    Tsounis, G. et al. The exploitation and conservation of precious corals. Oceanogr. Mar. Biol. An Annu. Rev. 48, 161–211 (2010).

    Article 

    Google Scholar 

  • 23.

    Deidun, A. et al. First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Ital. J. Zool. 82, 271–280 (2015).

    Google Scholar 

  • 24.

    Thompson, A., Sanders, J., Tandstad, M., Carocci, F. & Fuller, M. Vulnerable Marine Ecosystems: Processes and Practices in the High Seas (2016).

  • 25.

    Fabri, M. C. et al. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep. Res. Part II Top. Stud. Oceanogr. 104, 184–207 (2014).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Pearson, R. G. Species distribution modeling for conservation educators and practitioners synthesis. In (2008).

  • 27.

    Sundahl, H., Buhl-Mortensen, P. & Buhl-Mortensen, L. Distribution and Suitable Habitat of the Cold-Water Corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar. Sci. 7, 1–22 (2020).

    Article 

    Google Scholar 

  • 28.

    Tittensor, D. P. et al. Predicting global habitat suitability for stony corals on seamounts. J. Biogeogr. 36, 1111–1128 (2009).

    Article 

    Google Scholar 

  • 29.

    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Bargain, A. et al. Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Prog. Oceanogr. 169, 151–168 (2018).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Lauria, V. et al. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Sci. Rep. 7, 1–14 (2017).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Massi, D. et al. Spatial distribution of the black coral Leiopathes glaberrima (Esper, 1788) (Antipatharia: Leiopathidae) in the Mediterranean: A prerequisite for protection of Vulnerable Marine Ecosystems (VMEs). Eur. Zool. J. 85, 170–179 (2018).

    Article 

    Google Scholar 

  • 33.

    Hayes, D. R. et al. Review of the circulation and characteristics of intermediate water masses of the mediterranean: Implications for cold-water coral habitats. In Mediterranean cold-water corals: Past, present and future (eds. Orejas, C. & Jiménez, C.) 195–212 (Springer, 2019).

  • 34.

    Pinardi, N. & Masetti, E. Variabilityofthelarge-scalegeneralcirculationofthe, MediterraneanSeafromobservationsandmodelling:areview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 153–173 (2000).

    Article 

    Google Scholar 

  • 35.

    Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Astraldi, M. et al. Water mass properties and chemical signatures in the central Mediterranean region. J. Mar. Syst. 133–134, 155–177 (2002).

    Article 

    Google Scholar 

  • 37.

    Taviani, M. et al. The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep. Res. Part II Top. Stud. Oceanogr. 145, 61–78 (2017).

    ADS 
    Article 

    Google Scholar 

  • 38.

    EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM 2016). EMODnet Bathymetry Consortium (2016). https://doi.org/10.12770/c7b53704-999d-4721-b1a3-04ec60c87238.

  • 39.

    McArthur, M. et al. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 88, 21–32 (2010).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Lauria, V. et al. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Sci. Rep. 7, 8049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35 (2007).

    Article 

    Google Scholar 

  • 42.

    Tong, R., Purser, A., Unnithan, V. & Guinan, J. Multivariate statistical analysis of distribution of deep-water gorgonian corals in relation to seabed topography on the norwegian margin. PLoS ONE 7, 1–13 (2012).

    Google Scholar 

  • 43.

    Savini, A., Vertino, A., Marchese, F., Beuck, L. & Freiwald, A. Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (central Mediterranean): An assessment of coral coverage and associated vulnerability. PLoS ONE 9, e102405 (2014).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Sbrocco, E. & Barber, P. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979 (2013).

    Article 

    Google Scholar 

  • 45.

    White, M., Mohn, C., Stigter, H. & Mottram, G. Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In eds. Freiwald, A. & Robert, JM. 503−514 (2005).

  • 46.

    Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol. Oceanogr. 54, 620–629 (2009).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 system). (2019).

  • 48.

    Guinotte, J. Climate change and deep-sea corals. J. Mar. Educ. 21, 48–49 (2005).

    Google Scholar 

  • 49.

    Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data. (Springer2007).

  • 50.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 51.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).

    Article 

    Google Scholar 

  • 52.

    Tong, Y., Chen, X. & Chen, Y. Evaluating alternative management strategies for bigeye tuna, <i>Thunnus obesus</i> in the Indian Ocean. Sci. Mar. 77, 449–460 (2013).

    Article 

    Google Scholar 

  • 53.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Article 

    Google Scholar 

  • 54.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Article 

    Google Scholar 

  • 55.

    Bargain, A., Marchese, F., Savini, A., Taviani, M. & Fabri, M. C. Santa Maria di Leuca province (Mediterranean Sea): Identification of suitable mounds for cold-water coral settlement using geomorphometric proxies and maxent methods. Front. Mar. Sci. 4, 1–17 (2017).

    Article 

    Google Scholar 

  • 56.

    Fabri, M. C., Bargain, A., Pairaud, I., Pedel, L. & Taupier-Letage, I. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions. Deep. Res. Part II Top. Stud. Oceanogr. 137, 436–453 (2017).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Phillips, S. J. & Dudı, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. 161–175 (2008). https://doi.org/10.1111/j.2007.0906-7590.05203.x

  • 58.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar 

  • 59.

    Phillips, S. J. & Dudik, M. Modeling of species distributions withMaxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).

    Article 

    Google Scholar 

  • 60.

    Young, N., Lane, C. & Evangelista, P. A MaxEnt Model Tutorial (ArcGISv10) (2011).

  • 61.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. Opening the black box: an open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).

    Article 

    Google Scholar 

  • 62.

    Mytilineou, C. et al. New cold-water coral occurrences in the Eastern Ionian Sea: Results from experimental long line fishing. Deep. Res. Part II Top. Stud. Oceanogr. 99, 146–157 (2014).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. Coral reefs of the world. In Mediterranean cold-water corals: Past; present and future (eds. Orejas, C. & Jiménez C.) 213–243 (Springer, 2019).

  • 64.

    Mascle, J., Migeon, S., Coste, M., Hassoun, V. & Rouillard, P. Rocky vs sedimentary canyons around the mediterranean sea and the black sea. In Submarine canyon dynamics in the mediterranean and tributary seas—An integrated geological, oceanographic and biological perspective CIESM (ed. Briand, F.) (2015).

  • 65.

    Canals, M. et al. Flushing submarine canyons. Nature 444, 354–357 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Huvenne, V. A. I. et al. picture on the wall: innovative mapping reveals coldwater coral refuge in submarine canyon. PLoS ONE 6, e28755 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Bo, M. et al. Coral assemblages off the Calabrian Coast (South Italy) with new observations on living colonies of Antipathes dichotoma. Ital. J. Zool. 78, 231–242 (2010).

    Article 

    Google Scholar 

  • 68.

    Freiwald, A. & Roberts, M. J. Cold-water corals and ecosystems: preface. In Cold-water corals and ecosystems (ed. Freiwald, A. R.) 1243 (Springer, 2005).

  • 69.

    Khripounoff, A. et al. Deep cold-water coral ecosystems in the Brittany submarine canyons (Northeast Atlantic): Hydrodynamics, particle supply, respiration, and carbon cycling. Limnol. Oceanogr. 59, 87–98 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Davies, A. J., Wisshak, M., Orr, J. C. & Murray Roberts, J. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep. Res. Part I Oceanogr. Res. Pap. 55, 1048–1062 (2008).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Greathead, C. F., Donnan, D. W., Mair, J. M. & Saunders, G. R. The sea pens Virgularia mirabilis, Pennatula phosphorea and Funiculina quadrangularis: Distribution and conservation issues in Scottish waters. J. Mar. Biol. Assoc. UK 87, 1095–1103 (2007).

    Article 

    Google Scholar 

  • 72.

    Barry, S. & Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 43, 413–423 (2006).

    Article 

    Google Scholar 

  • 73.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 763–773 (2008).

  • 74.

    Parolo, G., Rossi, G. & Ferrarini, A. oward improved species niche mod-elling: arnica montana in the Alps as a case study. J. Appl. Ecol. 45, 1410–1418 (2008).

    Article 

    Google Scholar 

  • 75.

    Gogol-Prokurat, M. Predicting habitat suitability for rare plants at localspatial scales using a species distribution model. Ecol. Appl. 21, 33–47 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 76.

    Bean, W. T., Stafford, R. & Brashares, J. S. he effects of small sample sizeand sample bias on threshold selection and accuracy assessment of species dis-tribution models. Ecography (Cop.) 35, 250–258 (2012).

    Article 

    Google Scholar 

  • 77.

    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ (2017).

  • 78.

    Opresko, D. M. & Försterra, G. No Title. in El Mar Mediterraneo: fauna, flora, ecologia. (ed. Hofrichter, R.) 506–509 (2004).

  • 79.

    Aguilar, R. & Marín, P. Mediterranean deep-sea corals : reasons protection under the Barcelona Convention. 1–18 (2013).

  • 80.

    FAO. International Guidelines for the Management of Deep-sea Fisheries in the High Seas. 73 (2009).

  • 81.

    Marin, P. & Aguilar, R. Mediterranean submarine canyons 2012: pending protection. in Mediterranean Submarine Canyons: Ecology and Governance 191–206 (IUCN, 2012).

  • 82.

    Thurstan, R. H., Brockington, S. & Roberts, C. M. The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat. Commun. 1, 1–6 (2010).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Worm, B. & Tittensor, D. P. Range contraction in large pelagic predators. Proc. Natl. Acad. Sci. USA 108, 11942–11947 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Gross, M. Deep sea in deep trouble?. Curr. Biol. 25, 1019-R1021 (2015).

    Article 
    CAS 

    Google Scholar 

  • 85.

    Morato, T., Watson, R., Pitcher, T. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).

    Article 

    Google Scholar 

  • 86.

    Roberts, C. M. Deep impact: The rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).

    MathSciNet 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology

    Amy Watterson: Model engineer