in

A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium

  • 1.

    Prabakaran S, Lippens G, Steen H, Gunawardena J. Post‐translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med. 2012;4:565–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    den Ridder M, Daran-Lapujade P, Pabst M. Shot-gun proteomics: why thousands of unidentified signals matter. FEMS Yeast Res. 2020;20:foz088.

    Article 
    CAS 

    Google Scholar 

  • 4.

    Spoel SH. Orchestrating the proteome with post-translational modifications. Oxford University Press UK. 2018;19:4499–4503.

  • 5.

    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. Essentials of glycobiology. 3rd edition. (Cold Spring Harbor Laboratory Press, New York, 2015–2017).

  • 6.

    Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol. 2011;3:a005462.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Varki A, Lowe JB. Biological roles of glycans. In: Varki A. Essentials of glycobiology. 2nd edition (Cold Spring Harbor Laboratory Press, New York, 2009). pp 75–88.

  • 8.

    Herget S, Toukach PV, Ranzinger R, Hull WE, Knirel YA, Von der Lieth C-W. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. BMC Struct Biol. 2008;8:1–20.

    Article 
    CAS 

    Google Scholar 

  • 9.

    Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev. 2017;41:49–91.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Eichler J, Koomey M. Sweet new roles for protein glycosylation in prokaryotes. Trends Microbiol. 2017;25:662–72.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Eichler J. Extreme sweetness: protein glycosylation in archaea. Nat Rev Microbiol. 2013;11:151.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Kleikamp HB, Lin YM, McMillan DG, Geelhoed JS, Naus-Wiezer SN, Van Baarlen P, et al. Tackling the chemical diversity of microbial nonulosonic acids–a universal large-scale survey approach. Chem Sci. 2020;11:3074–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Boleij M, Kleikamp H, Pabst M, Neu TR, Van Loosdrecht MC, Lin Y. Decorating the anammox house: sialic acids and sulfated glycosaminoglycans in the extracellular polymeric substances of anammox granular sludge. Environ Sci Technol. 2020;54:5218–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Bucci M. A gut reaction. Nat Chem Biol. 2020;16:363-.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci. 2009;106:4752–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature. 2006;440:790.

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Kartal B, Kuenen JV, Van Loosdrecht M. Sewage treatment with anammox. Science. 2010;328:702–3.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    van Niftrik L, Jetten MS. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev. 2012;76:585–96.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Fuerst JA, Sagulenko E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol. 2011;9:403.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Van Teeseling MC, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun. 2015;6:6878.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, et al. Planctomycetes do possess a peptidoglycan cell wall. Nat Commun. 2015;6:7116.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    van Teeseling MC, Maresch D, Rath CB, Figl R, Altmann F, Jetten MS, et al. The S-layer protein of the anammox bacterium Kuenenia stuttgartiensis is heavily O-glycosylated. Front Microbiol. 2016;7:1721.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    van Teeseling MC, de Almeida NM, Klingl A, Speth DR, den Camp HJO, Rachel R, et al. A new addition to the cell plan of anammox bacteria:“Candidatus Kuenenia stuttgartiensis” has a protein surface layer as the outermost layer of the cell. J Bacteriol. 2014;196:80–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Boleij M, Pabst M, Neu TR, van Loosdrecht MC, Lin Y. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge. Environ Sci Technol. 2018;52:13127–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Gerbino E, Carasi P, Mobili P, Serradell M, Gómez-Zavaglia A. Role of S-layer proteins in bacteria. World J Microbiol Biotechnol. 2015;31:1877–87.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Sleytr UB, Schuster B, Egelseer E-M, Pum D. S-layers: principles and applications. FEMS Microbiol Rev. 2014;38:823–64.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Schuster B, Sleytr UB. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta biomaterialia. 2015;19:149–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Tamir A, Eichler J N-Glycosylation is important for proper Haloferax volcanii S-layer stability and function. Appl Environ Microbiol. 2017;83:e03152-16.

  • 30.

    Wang F, Cvirkaite-Krupovic V, Kreutzberger MA, Su Z, de Oliveira GA, Osinski T, et al. An extensively glycosylated archaeal pilus survives extreme conditions. Nat Microbiol. 2019;4:1401–10.

  • 31.

    Li P-N, Herrmann J, Tolar BB, Poitevin F, Ramdasi R, Bargar JR, et al. Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME J. 2018;12:2389–402.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Posch G, Pabst M, Brecker L, Altmann F, Messner P, Schäffer C. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem. 2011;286:38714–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Benz I, Schmidt MA. Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol. 2002;45:267–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Sekot G, Posch G, Messner P, Matejka M, Rausch-Fan X, Andrukhov O, et al. Potential of the Tannerella forsythia S-layer to delay the immune response. J Dent Res. 2011;90:109–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Szymanski CM, Burr DH, Guerry P. Campylobacter protein glycosylation affects host cell interactions. Infect Immun. 2002;70:2242.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends Biochem Sci. 1998;23:321–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Koomey M. O-linked protein glycosylation in bacteria: snapshots and current perspectives. Curr Opin Struct Biol. 2019;56:198–203.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Wang N, Anonsen JH, Hadjineophytou C, Reinar WB, Børud B, Vik Å, et al. Allelic polymorphisms in a glycosyltransferase gene shape glycan repertoire in the O-linked protein glycosylation system of Neisseria. Glycobiology. 2021;31:477–91.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Stadlmann J, Taubenschmid J, Wenzel D, Gattinger A, Dürnberger G, Dusberger F, et al. Comparative glycoproteomics of stem cells identifies new players in ricin toxicity. Nature. 2017;549:538–42.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Polasky DA, Yu F, Teo GC, Nesvizhskii AI. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods. 2020;17:1125–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Lu L, Riley NM, Shortreed MR, Bertozzi CR, Smith LM. O-Pair Search with MetaMorpheus for O-glycopeptide characterization. Nat Methods. 2020;17:1133–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteom. 2018;15:203–16.

    CAS 
    Article 

    Google Scholar 

  • 43.

    Ahrné E, Müller M, Lisacek F. Unrestricted identification of modified proteins using MS/MS. Proteomics. 2010;10:671–86.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinforma. 2012;40:13.20. 1-13.20. 14

    Article 

    Google Scholar 

  • 45.

    Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics. 2012;11:1–13.

  • 46.

    Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, et al. TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat Biotechnol. 2019;37:469–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Izaham ARA, Scott NE. Open database searching enables the identification and comparison of bacterial glycoproteomes without defining glycan compositions prior to searching. Mol Cell Proteom. 2020;19:1561–74.

    CAS 
    Article 

    Google Scholar 

  • 48.

    Ahmad Izaham AR, Ang C-S, Nie S, Bird LE, Williamson NA, Scott NE. What are we missing by using hydrophilic enrichment? improving bacterial glycoproteome coverage using total proteome and FAIMS analyses. J Proteome Res. 2020;20:599–612.

  • 49.

    Kelstrup CD, Frese C, Heck AJ, Olsen JV, Nielsen ML. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). Mol Cell Proteom. 2014;13:1914–24.

    CAS 
    Article 

    Google Scholar 

  • 50.

    Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B 2007;849:115–28.

    CAS 
    Article 

    Google Scholar 

  • 51.

    Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E. Site-specific O-glycosylation analysis of human blood plasma proteins. Mol Cell Proteom. 2016;15:624–41.

    CAS 
    Article 

    Google Scholar 

  • 52.

    Singh C, Zampronio CG, Creese AJ, Cooper HJ. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J proteome Res. 2012;11:4517–25.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Hoffmann M, Pioch M, Pralow A, Hennig R, Kottler R, Reichl U, et al. The fine art of destruction: a guide to in‐depth glycoproteomic analyses—exploiting the diagnostic potential of fragment ions. Proteomics 2018;18:1800282.

    Article 
    CAS 

    Google Scholar 

  • 54.

    Kosma P, Wugeditsch T, Christian R, Zayni S, Messner P. Glycan structure of a heptose-containing S-layer glycoprotein of Bacillus thermoaerophilus. Glycobiology. 1995;5:791–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Faridmoayer A, Fentabil MA, Haurat MF, Yi W, Woodward R, Wang PG, et al. Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem. 2008;283:34596–604.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Harding CM, Nasr MA, Scott NE, Goyette-Desjardins G, Nothaft H, Mayer AE, et al. A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host. Nat Commun. 2019;10:1–11.

    CAS 
    Article 

    Google Scholar 

  • 57.

    Speth DR, Guerrero-Cruz S, Dutilh BE, Jetten MS. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun. 2016;7:11172.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Lawson CE, Wu S, Bhattacharjee AS, Hamilton JJ, McMahon KD, Goel R, et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat Commun. 2017;8:1–12.

    Article 
    CAS 

    Google Scholar 

  • 59.

    Straka LL, Meinhardt KA, Bollmann A, Stahl DA, Winkler M-K. Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (Anammox) bacteria. ISME J. 2019;13:1997–2004.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Hu Z, Wessels HJ, van Alen T, Jetten MS, Kartal B. Nitric oxide-dependent anaerobic ammonium oxidation. Nat Commun. 2019;10:1–7.

    Article 
    CAS 

    Google Scholar 

  • 61.

    Shaw DR, Ali M, Katuri KP, Gralnick JA, Reimann J, Mesman R, et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat Commun. 2020;11:1–12.

    Article 
    CAS 

    Google Scholar 

  • 62.

    Lewis AL, Desa N, Hansen EE, Knirel YA, Gordon JI, Gagneux P, et al. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc Natl Acad Sci. 2009;106:13552–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 2018;12:1171–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, et al. Chemical remodeling of cell‐surface sialic acids through a palladium‐triggered bioorthogonal elimination reaction. Angew Chem Int Ed. 2015;54:5364–8.

    CAS 
    Article 

    Google Scholar 

  • 65.

    Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Köfeler H, et al. Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J. 2013;76:61–72.

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Popa I, Pons A, Mariller C, Tai T, Zanetta J-P, Thomas L, et al. Purification and structural characterization of de-N-acetylated form of GD3 ganglioside present in human melanoma tumors. Glycobiology. 2007;17:367–73.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Paschinger K, Wilson IB. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J. 2020;37:27–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, et al. Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteom. 2012;11:1203–19.

    Article 
    CAS 

    Google Scholar 

  • 69.

    Hadjineophytou C, Anonsen JH, Wang N, Ma KC, Viburiene R, Vik Å, et al. Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genet. 2019;15:e1008532.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol. 2016;18:2784–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Kartal B, Geerts W, Jetten MS. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria. Methods in enzymology. 486. Elsevier; 2011. p. 89–108.

    Google Scholar 

  • 72.

    Lotti T, Kleerebezem R, Lubello C, Van Loosdrecht M. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Kleikamp HB, Pronk M, Tugui C, da Silva LG, Abbas B, Lin YM, et al. Database-independent de novo metaproteomics of complex microbial communities. Cell Syst. 2021;12:375–83.

  • 74.

    Köcher T, Pichler P, Swart R, Mechtler K. Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc. 2012;7:882.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Lawson CE, Nuijten GH, de Graaf RM, Jacobson TB, Pabst M, Stevenson DM, et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13 C and 2 H metabolic network mapping. ISME J. 2021;15:673–87.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Laczny CC, Kiefer C, Galata V, Fehlmann T, Backes C, Keller A. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 2017;45:W171–W9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 81.

    Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S, Li W. Prokaryotic genome annotation pipeline. In: The NCBI Handbook. 2nd edition. (National Center for Biotechnology Information, US, 2013). pp 131–45.

  • 85.

    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology

    Amy Watterson: Model engineer