in

Macroscale patterns of oceanic zooplankton composition and size structure

  • 1.

    Litchman, E., Ohman, M. D. & Kiørboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484. https://doi.org/10.1093/plankt/fbt019 (2013).

    Article 

    Google Scholar 

  • 2.

    Kiørboe, T. & Hirst, A. G. Shifts in mass scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms. Am. Nat. 183, E118–E130. https://doi.org/10.1086/675241 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 1–25. https://doi.org/10.1146/annurev-marine-122414-034144 (2015).

    Article 

    Google Scholar 

  • 4.

    Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595–708 (1847).

    Google Scholar 

  • 5.

    Woodson, C., Schramski, J. R. & Joye, S. B. A unifying theory for top-heavy ecosystem structure in the ocean. Nat. Commun. 9, 1–8. https://doi.org/10.1038/s41467-017-02450-y (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 (2004).

    Article 

    Google Scholar 

  • 7.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. Trends Ecol. Evol. 26, 285–291. https://doi.org/10.1016/j.tree.2011.03.005 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Angilletta, M. J., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509. https://doi.org/10.1093/icb/44.6.498 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Atkinson, D. Temperature and organism size: A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58. https://doi.org/10.1016/S0065-2504(08)60212-3 (1994).

    Article 

    Google Scholar 

  • 10.

    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239. https://doi.org/10.1016/S0169-5347(97)01058-6 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359. https://doi.org/10.1126/science.1261359 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms?. Glob. Ecol. Biogeogr. 28, 64–77. https://doi.org/10.1111/geb.12847 (2018).

    Article 

    Google Scholar 

  • 13.

    Begon, M., Townsend, C. R. & Harper, J. L. Ecology: From Individuals to Ecosystems 4th edn. (Blackwell Publishing, New York, 2006).

    Google Scholar 

  • 14.

    Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T. J. & Barlow, R. G. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 112, 3153–3159. https://doi.org/10.1016/j.rse.2008.03.011 (2008).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Kostadinov, T., Siegel, D. & Maritorena, S. Global variability of phytoplankton functional types from space: Assessment via the particle size distribution. Biogeosciences 7, 3239–3257. https://doi.org/10.5194/bg-7-3239-2010 (2010).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Brun, P., Payne, M. R. & Kiørboe, T. Trait biogeography of marine copepods: An analysis across scales. Ecol. Lett. 19, 1403–1413. https://doi.org/10.1111/ele.12688 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999. https://doi.org/10.1111/geb.12460 (2016).

    Article 

    Google Scholar 

  • 18.

    Garzke, J., Hansen, T., Ismar, S. M. H. & Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11, e0155952. https://doi.org/10.1371/journal.pone.0155952 (2006).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Stelzer, C. P. Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: Mechanisms and adaptive significance. Funct. Ecol. 16, 835–841. https://doi.org/10.1046/j.1365-2435.2002.00693.x (2002).

    Article 

    Google Scholar 

  • 20.

    Riemer, K., Anderson-Teixeira, K. J., Smith, F. A., Harris, D. J. & Ernest, S. K. M. Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Global Ecol. Biogeogr. 27, 958–967. https://doi.org/10.1111/geb.12757 (2018).

    Article 

    Google Scholar 

  • 21.

    Gorsky, G. et al. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32, 285–303. https://doi.org/10.1093/plankt/fbp124 (2010).

    Article 

    Google Scholar 

  • 22.

    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097. https://doi.org/10.1016/j.cell.2019.10.008 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Hoefnagel, K. N. & Verberk, W. C. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?. J. Therm. Biol. 54, 56–65. https://doi.org/10.1016/j.jtherbio.2014.12.003 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Wojewodzic, M. W., Kyle, M., Elser, J. J., Hessen, D. O. & Andersen, T. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna. Oecologia 165, 837–846. https://doi.org/10.1007/s00442-010-1863-2 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251. https://doi.org/10.1126/science.1061967 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Czarnoleski, M., Ejsmont-Karabin, J., Angilletta, M. K. & Kozlowski, J. Colder rotifers grow larger but only in oxygenated waters. Ecosphere 6, 1–5. https://doi.org/10.1890/ES15-00024.1 (2015).

    Article 

    Google Scholar 

  • 27.

    Kiørboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Benedetti, F., Gasparini, S. & Ayata, S.-D. Identifying copepod functional groups from species functional traits. J. Plankton Res. 38, 159–166. https://doi.org/10.1093/plankt/fbv096 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Brun, P., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113. https://doi.org/10.5194/essd-9-99-2017 (2017).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Anderson, T. R. Plankton functional type modelling: Running before we can walk?. J. Plankton Res. 27, 1073–1081. https://doi.org/10.1093/plankt/fbi076 (2005).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Biard, T. et al. In situ observations unveil an unexpectedly large biomass of Radiolaria and Phaeodaria (Rhizaria) in the oceans. Nature 532, 504–507. https://doi.org/10.1038/nature17652 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396. https://doi.org/10.5194/bg-16-3377-2019 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Rink, S., Kühl, M., Bijma, J. & Spero, H. J. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583–595. https://doi.org/10.1007/s002270050350 (1998).

    Article 

    Google Scholar 

  • 34.

    Lombard, F., Erez, J., Michel, E. & Labeyrie, L. Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnol. Oceanogr. 54, 210–218. https://doi.org/10.4319/lo.2009.54.1.0210 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Lesser, M. P. Coral Bleaching: Causes and Mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, 2011).

    Google Scholar 

  • 36.

    Villar, E. et al. Symbiont chloroplasts remain active during bleaching-like response induced by thermal stress in Collozoum pelagicum (Collodaria, Retaria). Front. Mar. Sci. 5, 387. https://doi.org/10.3389/fmars.2018.00387 (2018).

    Article 

    Google Scholar 

  • 37.

    Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer-Verlag, 1989).

    Book 

    Google Scholar 

  • 38.

    Suzuki, N. & Not, F. Biology and ecology of radiolaria. In Marine Protists: Diversity and Dynamics (eds Ohtsuka, S. et al.) (Springer, 2015).

    Google Scholar 

  • 39.

    de Puelles, F. et al. Zooplankton abundance and diversity in the tropical and subtropical ocean. Diversity 11, 203. https://doi.org/10.3390/d11110203 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. PNAS 107, 10120–10124. https://doi.org/10.1073/pnas.0913855107 (2010).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Brun, P. et al. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3, 416–423. https://doi.org/10.1038/s41559-018-0780-3 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cyc. 33, 458–468. https://doi.org/10.1029/2018GB006110 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Follows, M. J., Dutkiewicz, J., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846. https://doi.org/10.1126/science.1138544 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Ward, B. A., Dutkiewicz, S., Jahn, O. & Follows, J. F. A size-structured food-web model for the global ocean. Limnol. Oceanogr. 57, 1877–1891. https://doi.org/10.4319/lo.2012.57.6.1877 (2012).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Sailley, S. F. et al. Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecol. Model. 261, 43–57. https://doi.org/10.1016/j.ecolmodel.2013.04.006 (2013).

    Article 

    Google Scholar 

  • 46.

    Le Quéré, C. et al. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13, 4111–4133. https://doi.org/10.5194/bg-13-4111-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355–358. https://doi.org/10.1038/nclimate3265 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Sunagawa, S. et al. Tara Oceans: Towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445. https://doi.org/10.1038/s41579-020-0364-5 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023. https://doi.org/10.1038/sdata.2015.23 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Picheral, M. et al. Vertical profiles of environmental parameters measured on discrete water samples collected with Niskin bottles at station TARA_147 during the Tara Oceans expedition 2009–2013. PANGAEA https://doi.org/10.1594/PANGAEA.839235 (2014).

  • 51.

    Guidi, L. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about sensor data in the targeted environmental feature. PANGAEA https://doi.org/10.1594/PANGAEA.875576 (2017).

  • 52.

    Guidi, L. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about pigment concentrations (HPLC) in the targeted environmental feature. PANGAEA https://doi.org/10.1594/PANGAEA.875569 (2017).

  • 53.

    Guidi, L. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about nutrients in the targeted environmental feature. PANGAEA https://doi.org/10.1594/PANGAEA.875575 (2017).

  • 54.

    Speich, S. et al. Environmental context of all samples from the Tara Oceans Expedition (2009–2013), about the water column features at the sampling location. PANGAEA https://doi.org/10.1594/PANGAEA.875579 (2017).

  • 55.

    de Boyer-Montegut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003. https://doi.org/10.1029/2004JC002378 (2004).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Aminot, A., Kérouel, R. & Coverly, S. C. Nutrients in seawater using segmented flow analysis. In Practical Guidelines for the Analysis of Seawater (ed. Wurl, O.) (CRC Press, 2009).

    Google Scholar 

  • 57.

    Uitz, J., Claustre, H., Morel, A. & Hooker, S. B. Vertical distribution of phytoplankton communities in Open Ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 111, C08005. https://doi.org/10.1029/2005JC003207 (2006).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Pante, E. & Simon-Bouhet, B. marmap: A Package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Picheral, M., Colin, S. & Irisson J.-O. EcoTaxa, A Tool for the Taxonomic Classification of Images. http://ecotaxa.obs-vlfr.fr (2017).

  • 60.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).

    Book 

    Google Scholar 

  • 61.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).

    Article 

    Google Scholar 

  • 62.

    Giorgino, T. Computing and visualizing dynamic time warping alignments in R: The dtw package. J. Stat. Softw. 31, 1–24. https://doi.org/10.18637/jss.v031.i07 (2009).

    Article 

    Google Scholar 

  • 63.

    Park, H.-S. & Jun, C.-H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 36, 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039 (2009).

    Article 

    Google Scholar 

  • 64.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.

  • 65.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1–40, https://CRAN.R-project.org/package=HH (2020).

  • 67.

    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).

    Article 

    Google Scholar 

  • 68.

    Sarda-Espinosa, A. dtwclust: Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance. R package version 5.5.6, https://CRAN.R-project.org/package=dtwclust (2019).


  • Source: Ecology - nature.com

    Amy Watterson: Model engineer

    Vapor-collection technology saves water while clearing the air