in

Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood

  • 1.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Rinne-Garmston, K. T. et al. Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Glob. Chang. Biol. 25, 1852–1867 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Šamonil, P. et al. Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma 376, 114499 (2020).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Tláskal, V. et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078–20 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Odriozola, I. et al. Fungal communities are important determinants of bacterial community composition in deadwood. mSystems 6, e01017–20 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Valášková, V., de Boer, W., Gunnewiek, P. J. A. K., Pospíšek, M. & Baldrian, P. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 3, 1218–1221 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Brunner, A. & Kimmins, J. P. Nitrogen fixation in coarse woody debris of Thuja plicata and Tsuga heterophylla forests on northern Vancouver Island. Can. J. For. Res. 33, 1670–1682 (2003).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Rinne, K. T. et al. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct. Ecol. 31, 530–541 (2016).

    Article 

    Google Scholar 

  • 10.

    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article 

    Google Scholar 

  • 11.

    Tláskal, V. & Baldrian, P. Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Front. Microbiol. 12, 685303 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Lemos, L. N., Mendes, L. W., Baldrian, P. & Pylro, V. S. Genome-resolved metagenomics is essential for unlocking the microbial black box of the soil. Trends Microbiol. 29, 279–282 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Muller-landau, H. C. & Wright, S. J. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).

    Article 

    Google Scholar 

  • 16.

    Baldrian, P. et al. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23, 109–122 (2016).

    Article 

    Google Scholar 

  • 17.

    Smyth, C. E. et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant Soil 9, 46–62 (2016).

    Google Scholar 

  • 18.

    Král, K. et al. Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling. For. Ecol. Manage. 260, 2196–2203 (2010).

    Article 

    Google Scholar 

  • 19.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Lanzén, A. et al. CREST – Classification resources for environmental sequence tags. PLoS One 7, e49334 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Žifčáková, L., Větrovský, T., Howe, A. & Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288–301 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 23.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Lee, M. D. GToTree: A user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Větrovský, T., Baldrian, P. & Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. 7, 1–8 (2013).

    MathSciNet 
    Article 

    Google Scholar 

  • 38.

    Nilsson, R. H. et al. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 3, 284–287 (2010).

    Article 

    Google Scholar 

  • 39.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classification. Nucleic Acids Res. 47, D259–D264 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8, 352–359 (2016).

    Article 

    Google Scholar 

  • 43.

    Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 140 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    NCBI BioProject https://identifiers.org/ncbi/bioproject:PRJNA603240 (2020).

  • 45.

    NCBI Sequence Read Archive, https://identifiers.org/ncbi/bioproject:PRJNA672674 (2020).

  • 46.

    Sutela, S., Poimala, A. & Vainio, E. J. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol. Ecol. 95, fiz119 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Mackelprang, R. et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States. Front. Microbiol. 9, 1775 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Hervé, V. et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 8, e8614 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Clissmann, F. et al. First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiol. Ecol. 91, fiv050 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 51.

    Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3, e2527 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Geisen, S. et al. Metatranscriptomic census of active protists in soils. ISME J. 9, 2178–2190 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species reveal great heterogeneous distribution between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Christofides, S. R., Hiscox, J., Savoury, M., Boddy, L. & Weightman, A. J. Fungal control of early-stage bacterial community development in decomposing wood. Fungal Ecol. 42, 100868 (2019).

    Article 

    Google Scholar 

  • 56.

    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Seibold, S. et al. Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Amy Watterson: Model engineer

    Vapor-collection technology saves water while clearing the air