in

Agrochemicals interact synergistically to increase bee mortality

  • 1.

    Holden, C. Report warns of looming pollination crisis in North America. Science 314, 397 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561, 109–112 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Vanbergen, A. J. & The Insect Pollinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).

    Article 

    Google Scholar 

  • 9.

    EFSA. Bee health. https://www.efsa.europa.eu/en/topics/topic/bee-health (2019).

  • 10.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. R. Soc. B 287, 20200935 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Retschnig, G. et al. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environ. Microbiol. 17, 4322–4331 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. A. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl Acad. Sci. USA 110, 18466–18471 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health – a critical analysis. Biol. Rev. Camb. Philos. Soc. 91, 1006–1019 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Carnesecchi, E. et al. Investigating combined toxicity of binary mixtures in bees: meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. Environ. Int. 133 (Pt B), 105256 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob. Change Biol. 22, 180–189 (2016).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Ascher, J. S. & Pickering, J. Discover life: bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). https://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS (2012).

  • 25.

    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2011).

  • 27.

    Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides? — A brief review. Environ. Int. 89–90, 7–11 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 86, 40–47 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Cedergreen, N. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9, e96580 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Carvell, C. et al. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489 (2006).

    Article 

    Google Scholar 

  • 33.

    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110, 13434–13439 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Siviter, H. & Muth, F. Do novel insecticides pose a threat to beneficial insects? Proc. R. Soc. B 287, 20201265 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Topping, C. J., Aldrich, A. & Berny, P. Overhaul environmental risk assessment for pesticides. Science 367, 360–363 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Sgolastra, F. et al. Bees and pesticide regulation: lessons from the neonicotinoid experience. Biol. Conserv. 241, 108356 (2020).

    Article 

    Google Scholar 

  • 39.

    Mullin, C. A. Effects of ‘inactive’ ingredients on bees. Curr. Opin. Insect Sci. 10, 194–200 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Colin, T., Monchanin, C., Lihoreau, M. & Barron, A. B. Pesticide dosing must be guided by ecological principles. Nat. Ecol. Evol. 4, 1575–1577 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Milner, A. M. & Boyd, I. L. Toward pesticidovigilance. Science 357, 1232–1234 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Franklin, E. L. & Raine, N. E. Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375 (2019

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177 (2019).

    Article 

    Google Scholar 

  • 44.

    OECD. Test No. 245: Honey Bee (Apis Mellifera L.), Chronic Oral Toxicity Test (10-Day Feeding) (OECD, 2017).

  • 45.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 

    Google Scholar 

  • 46.

    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 47.

    Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 55, 2812–2821 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cleaning up industrial filtration

    Using graphene foam to filter toxins from drinking water