Orams, M. B. Feeding wildlife as a tourism attraction: A review of issues and impacts. Tour. Manag. 23, 281–293 (2002).
Google Scholar
Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074 (2015).
Google Scholar
Knight, J. Making wildlife viewable: Habituation and attraction. Soc. Anim. 17, 167–184 (2009).
Google Scholar
Carter, N. H. et al. Coupled human and natural systems approach to wildlife research and conservation. Ecol. Soc. 19, 43 (2014).
Google Scholar
Balasubramaniam, K. N. et al. Addressing the challenges of research on human–wildlife interactions using the concept of coupled natural & human systems. Biol. Conserv. 257, 109095 (2021).
Google Scholar
Knight, J. The ready-to-view wild monkey: The convenience principle in Japanese wildlife tourism. Ann. Tour. Res. 37, 744–762 (2010).
Google Scholar
Okello, M. M., Manka, S. G. & D’Amour, D. E. The relative importance of large mammal species for tourism in Amboseli National Park, Kenya. Tour. Manag. 29, 751–760 (2008).
Google Scholar
Penteriani, V. et al. Consequences of brown bear viewing tourism: A review. Biol. Conserv. 206, 169–180 (2017).
Google Scholar
Ewen, J. G., Walker, L., Canessa, S. & Groombridge, J. J. Improving supplementary feeding in species conservation. Conserv. Biol. 29, 341–349 (2015).
Google Scholar
Jones, C. G. et al. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137, S173–S180 (1995).
Google Scholar
Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).
Google Scholar
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
Google Scholar
Civitello, D. J., Allman, B. E., Morozumi, C. & Rohr, J. R. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170101 (2018).
Google Scholar
Lappan, S., Malaivijitnond, S., Radhakrishna, S., Riley, E. P. & Ruppert, N. The human–primate interface in the new normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am. J. Primatol. 82, e23176 (2020).
Google Scholar
Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).
Google Scholar
Dunay, E., Apakupakul, K., Leard, S., Palmer, J. L. & Deem, S. L. Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth 15, 148–162 (2018).
Google Scholar
Fuentes, A., Shaw, E. & Cortes, J. Qualitative assessment of macaque tourist sites in Padangtegal, Bali, Indonesia, and the Upper Rock Nature Reserve, Gibraltar. Int. J. Primatol. 28, 1143–1158 (2007).
Google Scholar
Dellatore, D. F., Waitt, C. D. & Foitovà, I. The impact of tourism on the behavior of rehabilitated orangutans (Pongo abelii) in Bukit Lawang, North Sumatra, Indonesia. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 98–120 (Cambridge University Press, 2014).
Google Scholar
Berman, C. M., Matheson, M. D., Ogawa, H. & Ionica, C. S. Tourism, infant mortality and stress indicators among Tibetan macaques at Huangshan, China. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 21–43 (Cambridge University Press, 2014).
Google Scholar
Kurita, C. M. Provisioning and tourism infree-ranging Japanese macaques. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 44–55 (Cambridge University Press, 2014).
Google Scholar
Long, Y., Bleisch, W. & Richardson, M. Rhinopithecus bieti. The IUCN Red List of Threatened Species 2020: e.T19597A8986243. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T19597A8986243.en. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2020).
Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).
Google Scholar
Wong, M. H. G., Li, R., Xu, M. & Long, Y. An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biol. Conserv. 158, 401–409 (2013).
Google Scholar
Li, L., Xue, Y., Wu, G., Li, D. & Giraudoux, P. Potential habitat corridors and restoration areas for the black-and-white snub-nosed monkey Rhinopithecus bieti in Yunnan, China. Oryx 49, 719–726 (2015).
Google Scholar
Long, Y., Kirkpatrick, C. R., Zhongtai, & Xiaolin,. Report on the distribution, population, and ecology of the Yunnan snub-nosed monkey (Rhinopithecus bieti). Primates 35, 241–250 (1994).
Google Scholar
Afonso, E. et al. Creating small food-habituated groups might alter genetic diversity in the endangered Yunnan snub-nosed monkey. Glob. Ecol. Conserv. 26, e01422 (2021).
Google Scholar
Cui, Z., Li, J., Chen, Y. & Zhang, L. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Infect. Genet. Evol. 75, 104018 (2019).
Google Scholar
Jacob, A. S., Busby, E. J., Levy, A. D., Komm, N. & Clark, C. G. Expanding the Entamoeba universe: New hosts yield novel ribosomal lineages. J. Eukaryot. Microbiol. 63, 69–78 (2016).
Google Scholar
Verweij, J. J. et al. Entamoeba histolytica infections in captive primates. Parasitol. Res. 90, 100–103 (2003).
Google Scholar
Tachibana, H. et al. Isolation and characterization of a potentially virulent species Entamoeba nuttalli from captive Japanese macaques. Parasitology 136, 1169–1177 (2009).
Google Scholar
Levecke, B. et al. Molecular identification of Entamoeba spp. in captive nonhuman primates. J. Clin. Microbiol. 48, 2988–2990 (2010).
Google Scholar
Levecke, B. et al. Transmission of Entamoeba nuttalli and Trichuris trichiura from nonhuman primates to humans. Emerg. Infect. Dis. 21, 1871–1872 (2015).
Google Scholar
Rivera, W. L., Yason, J. A. D. L. & Adao, D. E. V. Entamoeba histolytica and E. dispar infections in captive macaques (Macaca fascicularis) in the Philippines. Primates 51, 69 (2009).
Google Scholar
Regan, C. S., Yon, L., Hossain, M. & Elsheikha, H. M. Prevalence of Entamoeba species in captive primates in zoological gardens in the UK. PeerJ 2, e492 (2014).
Google Scholar
Elsheikha, H. M., Regan, C. S. & Clark, C. G. Novel Entamoeba findings in nonhuman primates. Trends Parasitol. 34, 283–294 (2018).
Google Scholar
Tuda, J. et al. Identification of Entamoeba polecki with unique 18S rRNA gene sequences from celebes crested macaques and pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia. J. Eukaryot. Microbiol. 63, 572–577 (2016).
Google Scholar
Nolan, M. J. et al. Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi Impenetrable National Park, Uganda. Parasit. Vectors 10, 340 (2017).
Google Scholar
Ruiz-López, M. J., Monello, R. J., Gompper, M. E. & Eggert, L. S. The effect and relative importance of neutral genetic diversity for predicting parasitism varies across parasite taxa. PLoS ONE 7, e45404 (2012).
Google Scholar
Acevedo-Whitehouse, K. et al. Contrasting effects of heterozygosity on survival and hookworm resistance in California sea lion pups. Mol. Ecol. 15, 1973–1982 (2006).
Google Scholar
Grueter, C. C. et al. Ranging of Rhinopithecus bieti in the Samage Forest, China. I. Characteristics of range use. Int. J. Primatol. 29, 1121–1145 (2008).
Google Scholar
Li, D. et al. Ranging of Rhinopithecus bieti in the Samage Forest, China. II. Use of land cover types and altitudes. Int. J. Primatol. 29, 1147 (2008).
Google Scholar
Xue, Y. et al. Analysis of habitat connectivity of the Yunnan snub-nosed monkeys (Rhinopithecus bieti) using landscape genetics. Shengtai Xuebao Acta Ecol. Sin. 31, 5886–5893 (2011).
Google Scholar
Fu, R., Li, L., Yu, Z., Afonso, E. & Giraudoux, P. Spatial and temporal distribution of Yunnan snub-nosed monkey, Rhinopithecus bieti, indices. Mammalia 83, 103 (2018).
Google Scholar
Vlčková, K. et al. Diversity of Entamoeba spp. in African great apes and humans: An insight from Illumina MiSeq high-throughput sequencing. Int. J. Parasitol. 48, 519–530 (2018).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar
Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. (2017).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Wright, E. S., Yilmaz, L. S. & Noguera, D. R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78, 717–725 (2012).
Google Scholar
Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Morgan, M. et al. ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).
Google Scholar
Galan, M. et al. 16S rRNA Amplicon sequencing for epidemiological surveys of bacteria in wildlife. mSystems 1, e00032 (2016).
Google Scholar
Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).
Google Scholar
Stensvold, C. R. et al. Increased sampling reveals novel lineages of Entamoeba: Consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist 162, 525–541 (2011).
Google Scholar
Burnham, K. P. & Anderson, D. R. Data-based selection of an appropriate biological model: The key to modern data analysis. In Wildlife 2001: Populations (eds McCullough, D. R. & Barrett, R. H.) 16–30 (Springer, 2001). https://doi.org/10.1007/978-94-011-2868-1_3.
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019).
Matsubayashi, M. et al. First detection and molecular identification of Entamoeba bovis from Japanese cattle. Parasitol. Res. 117, 339–342 (2018).
Google Scholar
Balloux, F., Amos, W. & Coulson, T. Does heterozygosity estimate inbreeding in real populations?. Mol. Ecol. 13, 3021–3031 (2004).
Google Scholar
Szulkin, M., Bierne, N. & David, P. Heterozygosity-fitness correlations: A time for reappraisal. Evolution 64, 1202–1217 (2010).
Google Scholar
Feng, M. et al. Prevalence and genetic diversity of Entamoeba species infecting macaques in southwest China. Parasitol. Res. 112, 1529–1536 (2013).
Google Scholar
Guan, Y. et al. Comparative analysis of genotypic diversity in Entamoeba nuttalli isolates from Tibetan macaques and rhesus macaques in China. Infect. Genet. Evol. 38, 126–131 (2016).
Google Scholar
Ponce Gordo, F., Martı́nez Dı́az, R. A. & Herrera, S. Entamoeba struthionis n.sp. (Sarcomastigophora: Endamoebidae) from ostriches (Struthio camelus). Vet. Parasitol. 119, 327–335 (2004).
Google Scholar
Ai, S. et al. The first survey and molecular identification of Entamoeba spp. in farm animals on Qinghai-Tibetan Plateau of China. Comp. Immunol. Microbiol. Infect. Dis. 75, 101607 (2021).
Google Scholar
Stensvold, C. R., Lebbad, M. & Clark, C. G. Genetic characterisation of uninucleated cyst-producing Entamoeba spp. from ruminants. Int. J. Parasitol. 40, 775–778 (2010).
Google Scholar
Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).
Google Scholar
Source: Ecology - nature.com