in

Feeding sites promoting wildlife-related tourism might highly expose the endangered Yunnan snub-nosed monkey (Rhinopithecus bieti) to parasite transmission

  • 1.

    Orams, M. B. Feeding wildlife as a tourism attraction: A review of issues and impacts. Tour. Manag. 23, 281–293 (2002).

    Article 

    Google Scholar 

  • 2.

    Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Knight, J. Making wildlife viewable: Habituation and attraction. Soc. Anim. 17, 167–184 (2009).

    Article 

    Google Scholar 

  • 4.

    Carter, N. H. et al. Coupled human and natural systems approach to wildlife research and conservation. Ecol. Soc. 19, 43 (2014).

    Article 

    Google Scholar 

  • 5.

    Balasubramaniam, K. N. et al. Addressing the challenges of research on human–wildlife interactions using the concept of coupled natural & human systems. Biol. Conserv. 257, 109095 (2021).

    Article 

    Google Scholar 

  • 6.

    Knight, J. The ready-to-view wild monkey: The convenience principle in Japanese wildlife tourism. Ann. Tour. Res. 37, 744–762 (2010).

    Article 

    Google Scholar 

  • 7.

    Okello, M. M., Manka, S. G. & D’Amour, D. E. The relative importance of large mammal species for tourism in Amboseli National Park, Kenya. Tour. Manag. 29, 751–760 (2008).

    Article 

    Google Scholar 

  • 8.

    Penteriani, V. et al. Consequences of brown bear viewing tourism: A review. Biol. Conserv. 206, 169–180 (2017).

    Article 

    Google Scholar 

  • 9.

    Ewen, J. G., Walker, L., Canessa, S. & Groombridge, J. J. Improving supplementary feeding in species conservation. Conserv. Biol. 29, 341–349 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Jones, C. G. et al. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137, S173–S180 (1995).

    Article 

    Google Scholar 

  • 11.

    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).

    Article 

    Google Scholar 

  • 12.

    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Civitello, D. J., Allman, B. E., Morozumi, C. & Rohr, J. R. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170101 (2018).

    Article 

    Google Scholar 

  • 14.

    Lappan, S., Malaivijitnond, S., Radhakrishna, S., Riley, E. P. & Ruppert, N. The human–primate interface in the new normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am. J. Primatol. 82, e23176 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Dunay, E., Apakupakul, K., Leard, S., Palmer, J. L. & Deem, S. L. Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth 15, 148–162 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Fuentes, A., Shaw, E. & Cortes, J. Qualitative assessment of macaque tourist sites in Padangtegal, Bali, Indonesia, and the Upper Rock Nature Reserve, Gibraltar. Int. J. Primatol. 28, 1143–1158 (2007).

    Article 

    Google Scholar 

  • 18.

    Dellatore, D. F., Waitt, C. D. & Foitovà, I. The impact of tourism on the behavior of rehabilitated orangutans (Pongo abelii) in Bukit Lawang, North Sumatra, Indonesia. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 98–120 (Cambridge University Press, 2014).

    Chapter 

    Google Scholar 

  • 19.

    Berman, C. M., Matheson, M. D., Ogawa, H. & Ionica, C. S. Tourism, infant mortality and stress indicators among Tibetan macaques at Huangshan, China. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 21–43 (Cambridge University Press, 2014).

    Chapter 

    Google Scholar 

  • 20.

    Kurita, C. M. Provisioning and tourism infree-ranging Japanese macaques. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 44–55 (Cambridge University Press, 2014).

    Chapter 

    Google Scholar 

  • 21.

    Long, Y., Bleisch, W. & Richardson, M. Rhinopithecus bieti. The IUCN Red List of Threatened Species 2020: e.T19597A8986243. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T19597A8986243.en. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2020).

  • 22.

    Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).

    Article 

    Google Scholar 

  • 23.

    Wong, M. H. G., Li, R., Xu, M. & Long, Y. An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biol. Conserv. 158, 401–409 (2013).

    Article 

    Google Scholar 

  • 24.

    Li, L., Xue, Y., Wu, G., Li, D. & Giraudoux, P. Potential habitat corridors and restoration areas for the black-and-white snub-nosed monkey Rhinopithecus bieti in Yunnan, China. Oryx 49, 719–726 (2015).

    Article 

    Google Scholar 

  • 25.

    Long, Y., Kirkpatrick, C. R., Zhongtai, & Xiaolin,. Report on the distribution, population, and ecology of the Yunnan snub-nosed monkey (Rhinopithecus bieti). Primates 35, 241–250 (1994).

    Article 

    Google Scholar 

  • 26.

    Afonso, E. et al. Creating small food-habituated groups might alter genetic diversity in the endangered Yunnan snub-nosed monkey. Glob. Ecol. Conserv. 26, e01422 (2021).

    Article 

    Google Scholar 

  • 27.

    Cui, Z., Li, J., Chen, Y. & Zhang, L. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Infect. Genet. Evol. 75, 104018 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Jacob, A. S., Busby, E. J., Levy, A. D., Komm, N. & Clark, C. G. Expanding the Entamoeba universe: New hosts yield novel ribosomal lineages. J. Eukaryot. Microbiol. 63, 69–78 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Verweij, J. J. et al. Entamoeba histolytica infections in captive primates. Parasitol. Res. 90, 100–103 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Tachibana, H. et al. Isolation and characterization of a potentially virulent species Entamoeba nuttalli from captive Japanese macaques. Parasitology 136, 1169–1177 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Levecke, B. et al. Molecular identification of Entamoeba spp. in captive nonhuman primates. J. Clin. Microbiol. 48, 2988–2990 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Levecke, B. et al. Transmission of Entamoeba nuttalli and Trichuris trichiura from nonhuman primates to humans. Emerg. Infect. Dis. 21, 1871–1872 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Rivera, W. L., Yason, J. A. D. L. & Adao, D. E. V. Entamoeba histolytica and E. dispar infections in captive macaques (Macaca fascicularis) in the Philippines. Primates 51, 69 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Regan, C. S., Yon, L., Hossain, M. & Elsheikha, H. M. Prevalence of Entamoeba species in captive primates in zoological gardens in the UK. PeerJ 2, e492 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Elsheikha, H. M., Regan, C. S. & Clark, C. G. Novel Entamoeba findings in nonhuman primates. Trends Parasitol. 34, 283–294 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Tuda, J. et al. Identification of Entamoeba polecki with unique 18S rRNA gene sequences from celebes crested macaques and pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia. J. Eukaryot. Microbiol. 63, 572–577 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Nolan, M. J. et al. Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi Impenetrable National Park, Uganda. Parasit. Vectors 10, 340 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Ruiz-López, M. J., Monello, R. J., Gompper, M. E. & Eggert, L. S. The effect and relative importance of neutral genetic diversity for predicting parasitism varies across parasite taxa. PLoS ONE 7, e45404 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Acevedo-Whitehouse, K. et al. Contrasting effects of heterozygosity on survival and hookworm resistance in California sea lion pups. Mol. Ecol. 15, 1973–1982 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Grueter, C. C. et al. Ranging of Rhinopithecus bieti in the Samage Forest, China. I. Characteristics of range use. Int. J. Primatol. 29, 1121–1145 (2008).

    Article 

    Google Scholar 

  • 41.

    Li, D. et al. Ranging of Rhinopithecus bieti in the Samage Forest, China. II. Use of land cover types and altitudes. Int. J. Primatol. 29, 1147 (2008).

    Article 

    Google Scholar 

  • 42.

    Xue, Y. et al. Analysis of habitat connectivity of the Yunnan snub-nosed monkeys (Rhinopithecus bieti) using landscape genetics. Shengtai Xuebao Acta Ecol. Sin. 31, 5886–5893 (2011).

    ADS 

    Google Scholar 

  • 43.

    Fu, R., Li, L., Yu, Z., Afonso, E. & Giraudoux, P. Spatial and temporal distribution of Yunnan snub-nosed monkey, Rhinopithecus bieti, indices. Mammalia 83, 103 (2018).

    Article 

    Google Scholar 

  • 44.

    Vlčková, K. et al. Diversity of Entamoeba spp. in African great apes and humans: An insight from Illumina MiSeq high-throughput sequencing. Int. J. Parasitol. 48, 519–530 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article 

    Google Scholar 

  • 46.

    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. (2017).

  • 48.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Wright, E. S., Yilmaz, L. S. & Noguera, D. R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78, 717–725 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Morgan, M. et al. ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Galan, M. et al. 16S rRNA Amplicon sequencing for epidemiological surveys of bacteria in wildlife. mSystems 1, e00032 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Stensvold, C. R. et al. Increased sampling reveals novel lineages of Entamoeba: Consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist 162, 525–541 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Burnham, K. P. & Anderson, D. R. Data-based selection of an appropriate biological model: The key to modern data analysis. In Wildlife 2001: Populations (eds McCullough, D. R. & Barrett, R. H.) 16–30 (Springer, 2001). https://doi.org/10.1007/978-94-011-2868-1_3.

    Chapter 

    Google Scholar 

  • 57.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019).

  • 58.

    Matsubayashi, M. et al. First detection and molecular identification of Entamoeba bovis from Japanese cattle. Parasitol. Res. 117, 339–342 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Balloux, F., Amos, W. & Coulson, T. Does heterozygosity estimate inbreeding in real populations?. Mol. Ecol. 13, 3021–3031 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Szulkin, M., Bierne, N. & David, P. Heterozygosity-fitness correlations: A time for reappraisal. Evolution 64, 1202–1217 (2010).

    PubMed 

    Google Scholar 

  • 61.

    Feng, M. et al. Prevalence and genetic diversity of Entamoeba species infecting macaques in southwest China. Parasitol. Res. 112, 1529–1536 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Guan, Y. et al. Comparative analysis of genotypic diversity in Entamoeba nuttalli isolates from Tibetan macaques and rhesus macaques in China. Infect. Genet. Evol. 38, 126–131 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Ponce Gordo, F., Martı́nez Dı́az, R. A. & Herrera, S. Entamoeba struthionis n.sp. (Sarcomastigophora: Endamoebidae) from ostriches (Struthio camelus). Vet. Parasitol. 119, 327–335 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Ai, S. et al. The first survey and molecular identification of Entamoeba spp. in farm animals on Qinghai-Tibetan Plateau of China. Comp. Immunol. Microbiol. Infect. Dis. 75, 101607 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Stensvold, C. R., Lebbad, M. & Clark, C. G. Genetic characterisation of uninucleated cyst-producing Entamoeba spp. from ruminants. Int. J. Parasitol. 40, 775–778 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cleaning up industrial filtration

    Using graphene foam to filter toxins from drinking water