in

Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses

  • 1.

    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).

    Article 

    Google Scholar 

  • 2.

    Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Gigliotti, L. C. et al. Latitudinal variation in snowshoe hare (Lepus americanus) body mass: a test of Bergmann’s rule. Can. J. Zool. 98, 88–95 (2020).

    Article 

    Google Scholar 

  • 4.

    Best, T. L. Intraspecific Variation in the Agile Kangaroo Rat (Dipodomys agilis). J. Mammal. 64, 426–436. https://doi.org/10.2307/1380355 (1983).

    Article 

    Google Scholar 

  • 5.

    Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Gigliotti, L. C., Diefenbach, D. R. & Sheriff, M. J. Geographic variation in winter adaptations of snowshoe hares (Lepus americanus). Can. J. Zool. 95, 539–545 (2017).

    Article 

    Google Scholar 

  • 7.

    Singaravelan, N. et al. Adaptation of pelage color and pigment variations in Israeli subterranean blind mole rats, Spalax ehrenbergi. PloS ONE 8, 119 (2013).

    Article 

    Google Scholar 

  • 8.

    Price, T., Ndiaye, O., Hammerschmidt, K. & Fischer, J. Limited geographic variation in the acoustic structure of and responses to adult male alarm barks of African green monkeys. Behav. Ecol. Sociobiol. 68, 815–825 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Lagos, L. & Bárcena, F. Spatial variability in wolf diet and prey selection in Galicia (NW Spain). Mammal Res. 63, 125–139. https://doi.org/10.1007/s13364-018-0352-6 (2018).

    Article 

    Google Scholar 

  • 10.

    Ashton, K. G., Tracy, M. C. & Queiroz, A. D. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster?. Oikos 119, 89–100 (2010).

    Article 

    Google Scholar 

  • 12.

    Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Basuony, M., Mohamed, W. & Shalabi, M. Food and feeding ecology of the Egyptian Mongoose, Herpestes ichneumon (Linnaeus, 1758) in Egypt. J. Appl. Sci. Res. 9, 5811–5816 (2013).

    Google Scholar 

  • 14.

    McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Wang, M. et al. Ambient temperature correlates with geographic variation in body size of least horseshoe bats. Curr. Zool. 2, 19 (2020).

    Google Scholar 

  • 16.

    Taggart, D. A. et al. Environmental factors influencing hairy-nosed wombat abundance in semi-arid rangelands. J. Wildl. Manag. 84, 921–929 (2020).

    Article 

    Google Scholar 

  • 17.

    Brandimarti, M. E. et al. Reference intervals for parameters of health of eastern grey kangaroos Macropus giganteus and management implications across their geographic range. Wildl. Biol. 2020 (2020).

  • 18.

    Fancourt, B. A., Hawkins, C. E. & Nicol, S. C. Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll. Wildl. Res. 45, 737–750 (2019).

    Article 

    Google Scholar 

  • 19.

    Phillips, B. L. & Shine, R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc. Natl. Acad. Sci. 101, 17150–17155 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Global Change Biol. 11, 1606–1613 (2005).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Borg, C., Majolo, B., Qarro, M. & Semple, S. A comparison of body size, coat condition and endoparasite diversity of wild Barbary macaques exposed to different levels of tourism. Anthrozoös 27, 49–63 (2014).

    Article 

    Google Scholar 

  • 22.

    Maceda-Veiga, A., Green, A. J. & De Sostoa, A. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshwat. Biol. 59, 1145–1160 (2014).

    Article 

    Google Scholar 

  • 23.

    Thatcher, H. R., Downs, C. T. & Koyama, N. F. Using parasitic load to measure the effect of anthropogenic disturbance on vervet monkeys. EcoHealth 15, 676–681 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).

    Article 

    Google Scholar 

  • 25.

    Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).

    Article 

    Google Scholar 

  • 26.

    Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D. & Frankham, R. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113, 23–34 (2003).

    Article 

    Google Scholar 

  • 27.

    Stevenson, R. & Woods, W. A. Jr. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46, 1169–1190 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass–size residuals: validating body condition indices. Ecology 86, 155–163 (2005).

    Article 

    Google Scholar 

  • 29.

    Weiss, D. J. & Wardrop, K. J. Schalm’s Veterinary Hematology (Wiley, 2011).

    Google Scholar 

  • 30.

    Hanks, J., Fowler, C. & Smith, T. Dynamics of large mammal populations. Dyn. Large Mamm. Popul. 2, 47–73 (1981).

    Google Scholar 

  • 31.

    Mapfumo, L., Muchenje, V., Mupangwa, J. F. & Scholtz, M. M. Changes in biochemical proxy indicators for nutritional stress resilience from Boran and Nguni cows reared in dry arid rangeland. Trop. Anim. Health Prod. 49, 1383–1392 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Miller, D. S. et al. Biomedical evaluation of free-ranging ring-tailed lemurs (Lemur catta) in three habitats at the Beza Mahafaly Special Reserve, Madagascar. J. Zoo Wildl. Med. 38, 201–216 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Pérez, J. M. et al. Distinguishing disease effects from environmental effects in a mountain ungulate: seasonal variation in body weight, hematology, and serum chemistry among Iberian ibex (Capra pyrenaica) affected by sarcoptic mange. J. Wildl. Dis. 51, 148–156 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Webster, K. N., Hill, N. J., Burnett, L. & Deane, E. M. Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possums. Wildl. Biol. 20, 206–216 (2014).

    Article 

    Google Scholar 

  • 35.

    Perrault, J. R. & Stacy, N. I. Note on the unique physiologic state of loggerhead sea turtles (Caretta caretta) during nesting season as evidenced by a suite of health variables. Mar. Biol. 165, 71 (2018).

    Article 

    Google Scholar 

  • 36.

    O’Brien, J., Schmitt, T., Nollens, H., Dubach, J. & Robeck, T. Reproductive physiology of the female Magellanic penguin (Spheniscus magellanicus): insights from the study of a zoological colony. Gen. Comp. Endocrinol. 225, 81–94 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 37.

    Robert, K. A. & Schwanz, L. E. Monitoring the health status of free-ranging tammar wallabies using hematology, serum biochemistry, and parasite loads. J. Wildl. Manag. 77, 1232–1243 (2013).

    Article 

    Google Scholar 

  • 38.

    Portas, T. J. et al. Beyond morbidity and mortality in reintroduction programmes: changing health parameters in reintroduced eastern bettongs Bettongia gaimardi. Oryx 50, 674–683 (2016).

    Article 

    Google Scholar 

  • 39.

    Lücker, A., Secomb, T. W., Weber, B. & Jenny, P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24, e12337. https://doi.org/10.1111/micc.12337 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Shield, J. A seasonal change in blood cell volume of the Rottnest Island quokka, Setonix brachyurus. J. Zool. 165, 343–354 (1971).

    Article 

    Google Scholar 

  • 41.

    Sealander, J. A. Seasonal changes in blood values of deer mice and other small mammals. Ecology 12, 107–119 (1962).

    Article 

    Google Scholar 

  • 42.

    Trumble, S. J., Castellini, M. A., Mau, T. L. & Castellini, J. M. Dietary and seasonal influences on blood chemistry and hematology in captive harbor seals. Mar. Mamm. Sci. 22, 104–123 (2006).

    Article 

    Google Scholar 

  • 43.

    Boonstra, R., McColl, C. J. & Karels, T. J. Reproduction at all costs: The adaptive stress response of male Arctic ground squirrels. Ecology 82, 1930–1946. (2001).

    Article 

    Google Scholar 

  • 44.

    Stockham, S. L. & Scott, M. A. Fundamentals of Veterinary Clinical Pathology (Wiley, 2013).

    Google Scholar 

  • 45.

    Thrall, M. A., Weiser, G., Allison, R. W. & Campbell, T. W. Veterinary Hematology and Clinical Chemistry (Wiley, 2012).

    Google Scholar 

  • 46.

    Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6, 1045 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Serrano, E. et al. The use of total serum proteins and triglycerides for monitoring body condition in the Iberian wild goat (Capra pyrenaica). J. Zoo Wildl. Med. 39, 646–649 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Stevens, L. A. & Levey, A. S. Measurement of kidney function. . Med. Clin. 89, 457–473 (2005).

    Google Scholar 

  • 49.

    Vanholder, R., Glorieux, G., De Smet, R. & Lameire, N. New insights in uremic toxins. Kidney Int. 63, S6–S10 (2003).

    Article 

    Google Scholar 

  • 50.

    Caldeira, R., Belo, A., Santos, C., Vazques, M. & Portugal, A. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 68, 233–241 (2007).

    Article 

    Google Scholar 

  • 51.

    Schutte, J. E., Longhurst, J. C., Gaffney, F. A., Bastian, B. C. & Blomqvist, C. G. Total plasma creatinine: an accurate measure of total striated muscle mass. J. Appl. Physiol. 51, 762–766 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Kaneko, J. J., Harvey, J. W. & Bruss, M. L. Clinical Biochemistry of Domestic Animals. (Academic Press, 2008).

  • 53.

    Stirrat, S. C. Body condition and blood chemistry of agile wallabies (Macropus agilis) in the wet–dry tropics. Wildl. Res. 30, 59–67 (2003).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Lassen, E. Perspectives in data interpretation. Vet. Hematol. Clini. Chem. 5, 45–49 (2004).

    Google Scholar 

  • 55.

    Maceda-Veiga, A. et al. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. Sci. Total Environ. 514, 322–332 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Brandimarti, M. E., Gray, R., Silva, F. R. & Herbert, C. A. Kangaroos at maximum capacity: health assessment of free-ranging eastern grey kangaroos on a coastal headland. J. Mamm. 2, 96 (2021).

    Google Scholar 

  • 57.

    Clark, P. Haematology of Australian Mammals. (CSIRO Publishing, 2004).

  • 58.

    Solberg, H. A guide to IFCC recommendations on reference values. J. Int. Fed. Clin. Chem. 5, 162–165 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Gongora, J. et al. Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. J. Zool. 286, 110–119 (2012).

    Article 

    Google Scholar 

  • 60.

    Grant, T. & Fanning, D. The Platypus: A Unique Mammal. (University of New South Wales Press, 1995).

  • 61.

    Furlan, E. et al. Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?. Aust. J. Zool. 59, 201–215 (2012).

    Article 

    Google Scholar 

  • 62.

    Allen, A. Allens rule. The influence of Physical conditions in the genesis of species. Rad. Rev. 1, 108–140 (1877).

    Google Scholar 

  • 63.

    Bergmann, C. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger Studien 3, 595–708 (1847).

    Google Scholar 

  • 64.

    Grant, T., Griffiths, M. & Temple-Smith, P. in Proc. Linn. Soc. N.S.W. 227 (Linnean Society of New South Wales).

  • 65.

    Munks, S., Otley, H., Bethge, P. & Jackson, J. Reproduction, diet and daily energy expenditure of the platypus in a sub-alpine Tasmanian lake. Aust. Mamm. 21, 260–261 (2000).

    Google Scholar 

  • 66.

    Temple-Smith, P. & Grant, T. Uncertain breeding: a short history of reproduction in monotremes. Reprod. Fertil. Dev. 13, 487–497 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Chessman, B. C. & Williams, S. A. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: western Sydney, New South Wales, Australia. Pac. Conserv. Biol. 5, 36–55 (1999).

    Article 

    Google Scholar 

  • 68.

    Magierowski, R. H., Davies, P. E., Read, S. M. & Horrigan, N. Impacts of land use on the structure of river macroinvertebrate communities across Tasmania, Australia: spatial scales and thresholds. Mar. Freshw. Res. 63, 762–776 (2012).

    Article 

    Google Scholar 

  • 69.

    Verkaik, I., Prat, N., Rieradevall, M., Reich, P. & Lake, P. S. Effects of bushfire on macroinvertebrate communities in south-east Australian streams affected by a megadrought. Mar. Freshw. Res. 65, 359–369 (2014).

    Article 

    Google Scholar 

  • 70.

    Stitz, L., Fabbro, L. & Kinnear, S. Response of macroinvertebrate communities to seasonal hydrologic changes in three sub-tropical Australian streams. Environ. Monit. Assess. 189, 254 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 71.

    McLachlan-Troup, T., Dickman, C. & Grant, T. Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J. Zool. 280, 237–246 (2010).

    Article 

    Google Scholar 

  • 72.

    Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mamm. 100, 308–327 (2019).

    Article 

    Google Scholar 

  • 73.

    Grant, T. & Temple-Smith, P. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).

    Article 

    Google Scholar 

  • 74.

    Gust, N. et al. Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 57, 245–254 (2009).

    Article 

    Google Scholar 

  • 75.

    Klamt, M., Thompson, R. & Davis, J. Early response of the platypus to climate warming. Global Change Biol. 17, 3011–3018 (2011).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 77.

    Scheelings, T. Morbidity and mortality of monotremes admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Australia, 2000–2014. Aust. Vet. J. 94, 121–124 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Global Ecol. Conserv. 20, 720 (2019).

    Google Scholar 

  • 79.

    Connolly, J., Obendorf, D. & Whittington, R. Haematological, serum biochemical and serological features of platypuses with and without mycotic granulomatous dermatitis. Aust. Vet. J. 77, 809–813 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Geraghty, D. P., Griffiths, J., Stewart, N., Robertson, I. K. & Gust, N. Hematologic, plasma biochemical, and other indicators of the health of Tasmanian platypuses (Ornithorhynchus anatinus): predictors of mucormycosis. J. Wildl. Dis. 47, 483–493 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Macgregor, J. W. et al. A need for dynamic hematology and serum biochemistry reference tools: Novel use of sine wave functions to produce seasonally varying reference curves in platypuses (Ornithorhynchus anatinus). J. Wildl. Dis. 53, 235–247. https://doi.org/10.7589/2015-12-336 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 82.

    Booth, R. & Connolly, J. in Medicine in Australian Mammals 103–132 (CSIRO Publishing, 2008).

  • 83.

    Whittington, R. & Grant, T. Haematology and blood chemistry of the free-living platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 31, 475–482 (1983).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Whittington, R. & Grant, T. Haematology and Blood Chemistry of the Conscious Platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 32, 631–635. https://doi.org/10.1071/ZO9840631 (1984).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Grant, T. & Carrick, F. Some aspects of the ecology of the platypus, Ornithorhynchus anatinus, in the upper Shoalhaven River. New South Wales. Australian Zool. 20, 181–199 (1978).

    Google Scholar 

  • 86.

    Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: impacts and implications of river regulation on platypus populations. Aquatic Conservation in press (2020).

  • 88.

    Gallant, J. & Read, A. A near-global bare-Earth DEM from SRTM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, B4 (2016).

    Google Scholar 

  • 89.

    Temple-Smith, P. D. M. Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. (1973).

  • 90.

    Williams, G., Serena, M. & Grant, T. Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35, 107–114 (2013).

    Article 

    Google Scholar 

  • 91.

    Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 92.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 93.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing., (R Foundation for Statistical Computing., 2020).

  • 94.

    Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing, 2016).

    MATH 

    Google Scholar 

  • 95.

    Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. R Package Version, 1.8–23 (2018).

  • 96.

    Wood, S. & Wood, M. S. Package ‘mgcv’. R Package Ver. 1, 29 (2015).

    Google Scholar 

  • 97.

    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56 (2017).

    Article 

    Google Scholar 

  • 98.

    Geffré, A., Concordet, D., Braun, J. P. & Trumel, C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 40, 107–112 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 99.

    Friedrichs, K. R. et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 41, 441–453 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 100.

    Calver, M. C., Goldman, B., Hutchings, P. A. & Kingsford, R. T. Why discrepancies in searching the conservation biology literature matter. Biol. Conserv. 213, 19–26 (2017).

    Article 

    Google Scholar 

  • 101.

    Pfeffermann, D. The role of sampling weights when modeling survey data. International Statistical Review/Revue Internationale de Statistique, 317–337 (1993).

  • 102.

    Deem, S. L., Karesh, W. B. & Weisman, W. Putting theory into practice: wildlife health in conservation. Conserv. Biol. 15, 1224–1233 (2001).

    Article 

    Google Scholar 

  • 103.

    Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).

    Article 

    Google Scholar 

  • 104.

    Karesh, W. B. & Cook, R. A. Applications of veterinary medicine to in situ conservation efforts. Oryx 29, 244–252 (1995).

    Article 

    Google Scholar 

  • 105.

    Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).

    Article 

    Google Scholar 

  • 106.

    Elmore, R. D. et al. Implications of the thermal environment for terrestrial wildlife management. Wildl. Soc. Bull. 41, 183–193 (2017).

    Article 

    Google Scholar 

  • 107.

    Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comput. Biol. 53, 539–544 (2013).

    Article 

    Google Scholar 

  • 108.

    Brice, P. H. Thermoregulation in monotremes: riddles in a mosaic. Aust. J. Zool. 57, 255–263 (2009).

    Article 

    Google Scholar 

  • 109.

    Grant, T. Body temperatures of free-ranging platypuses, Ornithorhynchus anatinus (Monotremata), with observations on their use of burrows. Aust. J. Zool. 31, 117–122 (1983).

    Article 

    Google Scholar 

  • 110.

    Grant, T. & Dawson, T. Temperature regulation in the platypus, Ornithorhynchus anatinus: maintenance of body temperature in air and water. Physiol. Zool. 51, 1–6 (1978).

    Article 

    Google Scholar 

  • 111.

    Grant, T. & Dawson, T. J. Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol. Zool. 51, 315–332 (1978).

    Article 

    Google Scholar 

  • 112.

    Connolly, J. H., Claridge, T., Cordell, S. M., Nielsen, S. & Dutton, G. J. Distribution and characteristics of the platypus (Ornithorhynchus anatinus) in the Murrumbidgee catchment. Aust. Mamm. 38, 58–67 (2016).

    Article 

    Google Scholar 

  • 113.

    Grant, T. Historical and current distribution of the platypus, Ornithorhynchus anatinus. Australia. In Platypus and echidnas (ed. ML Augee), 232–254 (1992).

  • 114.

    Grant, T., Gehrke, P., Harris, J. & Hartley, S. Distribution of the platypus (Ornithorhynchus anatinus) in NSW: results of the 1994–96 NSW Rivers Survey. Aust. Mamm. 21, 177–184 (2000).

    Article 

    Google Scholar 

  • 115.

    Nazifi, S., Gheisari, H. & Poorabbas, H. The influences of thermal stress on serum biochemical parameters of dromedary camels and their correlation with thyroid activity. Comp. Haematol. Int. 9, 49–54 (1999).

    Article 

    Google Scholar 

  • 116.

    Singh, K. M. et al. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 141, 113–117 (2016).

    Article 

    Google Scholar 

  • 117.

    Zhang, Y. & Kieffer, J. D. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Can. J. Zool. 92, 215–221 (2014).

    CAS 
    Article 

    Google Scholar 

  • 118.

    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 119.

    Carr, M., Li, L., Sadeghian, A., Phillips, I. D. & Lindenschmidt, K. E. Modelling the possible impacts of climate change on the thermal regime and macroinvertebrate species of a regulated prairie river. Ecohydrology 12, e2102 (2019).

    Article 

    Google Scholar 

  • 120.

    Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 121.

    Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol. 13, 942–957 (2007).

    ADS 
    Article 

    Google Scholar 

  • 122.

    Walsh, C. J. Biological indicators of stream health using macroinvertebrate assemblage composition: a comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 57, 37–47 (2006).

    Article 

    Google Scholar 

  • 123.

    Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).

    Article 

    Google Scholar 

  • 124.

    Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time–Synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).

  • 125.

    Ambrosio, A. M. et al. Significant hematocrit decrease in healthy horses during clinical anesthesia. Braz. j. vet. Res. Anim. Sci. 49, 139–145 (2012).

    Article 

    Google Scholar 

  • 126.

    Dhumeaux, M. P. et al. Effects of a standardized anesthetic protocol on hematologic variables in healthy cats. J. Feline Med. Surg. 14, 701–705 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 127.

    Marini, R. et al. Effect of isoflurane on hematologic variables in ferrets. Am. J. Vet. Res. 55, 1479–1483 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 128.

    Bejaei, M. & Cheng, K. Effects of pretransport handling stress on physiological and behavioral response of ostriches. Poult. Sci. 93, 1137–1148 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 129.

    Delgiudice, G. D., Kunkel, K. E., Mech, L. D. & Seal, U. S. Minimizing capture-related stress on white-tailed deer with a capture collar. J. Wildl. Manag. 11, 299–303 (1990).

    Article 

    Google Scholar 

  • 130.

    Harvey, J. W. Veterinary Hematology-E-Book: A Diagnostic Guide and Color Atlas. (Elsevier Health Sciences, 2011).

  • 131.

    Raskin, R. E. Hematologic disorders 6. Clinical medicine of the dog and cat, Schaer M, editor. Manson Publishing, London, UK, 227–288 (2009).

  • 132.

    Mayer, J. & Donnelly, T. M. Clinical Veterinary Advisor-E-Book: Birds and Exotic Pets. (Elsevier Health Sciences, 2012).

  • 133.

    Bino, G., Grant, T. R. & Kingsford, R. T. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Sci. Rep. 5, 16073 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 134.

    Gust, N. & Handasyde, K. Seasonal-variation in the ranging behavior of the platypus (Ornithorhynchus-anatinus) on the Goulburn River, Victoria. Aust. J. Zool. 43, 193–208 (1995).

    Article 

    Google Scholar 

  • 135.

    Handasyde, K., McDonald, I. & Evans, B. Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 136, 895–902 (2003).

    CAS 
    Article 

    Google Scholar 

  • 136.

    Wang, J.-C., Gray, N. E., Kuo, T. & Harris, C. A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2, 19–19. https://doi.org/10.1186/2045-3701-2-19 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Griffiths, M. Reproduction and embryology. Biol. Monotremes, 209–254 (1978).

  • 138.

    Hawkins, M. & Battaglia, A. Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust. J. Zool. 57, 283–293 (2009).

    Article 

    Google Scholar 

  • 139.

    Thomas, J., Handasyde, K., Parrott, M. & Temple-Smith, P. The platypus nest: burrow structure and nesting behaviour in captivity. Aust. J. Zool. 65, 347–356 (2018).

    Article 

    Google Scholar 

  • 140.

    Holland, N. & Jackson, S. M. Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J. Zool. 256, 279–288 (2002).

    Article 

    Google Scholar 

  • 141.

    Thomas, J. L., Handasyde, K. A., Temple-Smith, P. & Parrott, M. L. Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 65, 319–327. https://doi.org/10.1071/ZO18004 (2017).

    Article 

    Google Scholar 

  • 142.

    Kruger, B., Hunter, S. & Serena, M. Husbandry, diet and behaviour of platypus Ornithorhynchus anatinus at Healesville Sanctuary. International Zoo Yearbook 31, 64–71 (1992).

    Article 

    Google Scholar 

  • 143.

    El-Sherif, M. & Assad, F. Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small Rumin. Res. 40, 269–277 (2001).

    PubMed 
    Article 

    Google Scholar 

  • 144.

    Hõrak, P., Jenni-Eiermann, S., Ots, I. & Tegelmann, L. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244 (1998).

    Article 

    Google Scholar 

  • 145.

    dos Santos Schmidt, E. M. et al. Serum biochemical parameters of female bronze turkeys (Meleagris gallopavo) during egg-laying season. Int J Poult Sci 9, 177–179 (2010).

  • 146.

    Lumeij, J. in Clinical biochemistry of domestic animals 857–883 (Elsevier, 1997).

  • 147.

    Whittington, C. M. & Belov, K. Tracing monotreme venom evolution in the genomics era. Toxins 6, 1260–1273 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 148.

    Grant, T. & Temple–Smith, P. Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 1081–1091 (1998).

  • 149.

    Handasyde, K. & McDonald, I. Reproductive hormones and reproduction in the platypus. Progress Comp. Endocrinol., 184–185 (1993).

  • 150.

    Wikelski, M., Lynn, S., Breuner, J., Wingfield, J. & Kenagy, G. Energy metabolism, testosterone and corticosterone in white-crowned sparrows. J. Comp. Physiol. A. 185, 463–470 (1999).

    CAS 
    Article 

    Google Scholar 

  • 151.

    Thomas, J. L., Parrott, M. L., Handasyde, K. A. & Temple-Smith, P. Female control of reproductive behaviour in the platypus (Ornithorhynchus anatinus), with notes on female competition for mating. Behaviour 155, 27–53 (2018).

    Article 

    Google Scholar 

  • 152.

    Hawke, T. et al. Long term movements and activity patterns of platypus on regulated rivers. Scientific Reports in press (2020).

  • 153.

    Andersen, N. A., Mesch, U., Lovell, D. J. & Nicol, S. C. The effects of sex, season, and hibernation on haematology and blood viscosity of free-ranging echidnas (Tachyglossus aculeatus). Can. J. Zool. 78, 174–181 (2000).

    Article 

    Google Scholar 

  • 154.

    Barnett, J., How, R. & Humphreys, W. Blood parameters in natural populations of Trichosurus species (Marsupialia: Phalangeridae). I. Age, sex and seasonal variation in T. caninus and T. vulpecula. II. Influence of habitat and population strategies of T. caninus and T. vulpecula. Aust. J. Zool. 27, 913–926 (1979).

  • 155.

    Fancourt, B. A. & Nicol, S. C. Hematologic and serum biochemical reference intervals for wild eastern quolls (Dasyurus viverrinus): variation by age, sex, and season. Vet. Clin. Pathol. 48, 114–124 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 156.

    McKenzie, S., Deane, E. & Burnett, L. Haematology and serum biochemistry of the tammar wallaby, Macropus eugenii. Comp. Clin. Pathol. 11, 229–237 (2002).

    CAS 
    Article 

    Google Scholar 

  • 157.

    Schultz, D. J. et al. Investigations into the health of brush-tailed rock-wallabies (Petrogale penicillata) before and after reintroduction. Aust. Mamm. 33, 235–244 (2011).

    Article 

    Google Scholar 

  • 158.

    Warren, K. S., Holyoake, C. S., Friend, T. J., Yeap, L. & McConnell, M. Hematologic and serum biochemical reference intervals for the bilby (Macrotis lagotis). J. Wildl. Dis. 51, 889–895 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 159.

    Woolford, L. et al. Serum biochemistry of free-ranging southern hairy-nosed wombats (Lasiorhinus latifrons). J. Zool. Wildl. Med. 50, 937–946 (2020).

    Article 

    Google Scholar 

  • 160.

    Sidman, C. L. et al. Increased expression of major histocompatibility complex antigens on lymphocytes from aged mice. Proc. Natl. Acad. Sci. 84, 7624–7628 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 161.

    Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Australasian Mycol. 28, 1–8 (2009).

    Google Scholar 

  • 162.

    MacGregor, J. W. et al. Assessing body condition in the platypus (Ornithorhynchus anatinus): A comparison of new and old methods. Aust. J. Zool. 64, 421–429. https://doi.org/10.1071/ZO16071 (2016).

    Article 

    Google Scholar 

  • 163.

    Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).

    Article 

    Google Scholar 

  • 164.

    Woinarski, J. C., Burbidge, A. A. & Harrison, P. L. The action plan for Australian mammals 2012. (2014).

  • 165.

    Parer, J. & Metcalfe, J. Respiratory studies of monotremes. I. Blood of the platypus (Ornithorynchus anatinus). Respir. Physiol. 3, 136–142 (1967).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 166.

    Isaacks, R., Nicol, S., Sallis, J., Zeidler, R. & Kim, H. D. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R236–R241 (1984).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Finding common ground in Malden

    A large dataset of detection and submeter-accurate 3-D trajectories of juvenile Chinook salmon