in

Quantifying the dynamics of rocky intertidal sessile communities along the Pacific coast of Japan: implications for ecological resilience

  • 1.

    Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996).

    Article 

    Google Scholar 

  • 2.

    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).

    Article 

    Google Scholar 

  • 3.

    Gunderson, L. H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article 

    Google Scholar 

  • 4.

    Thrush, S. F. et al. Forecasting the limits of resilience: Integrating empirical research with theory. Proc. R. Soc. B Biol. Sci. 276, 3209–3217 (2009).

    Article 

    Google Scholar 

  • 5.

    Bagchi, S. et al. Quantifying long-term plant community dynamics with movement models: Implications for ecological resilience. Ecol. Appl. 27, 1514–1528 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Radchuk, V. et al. The dimensionality of stability depends on disturbance type. Ecol. Lett. 22, 674–684 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Raffaelli, D. & Hawkins, S. J. Intertidal Ecology (Chapman & Hall, 1996).

    Book 

    Google Scholar 

  • 15.

    Tsujino, M. et al. Distance decay of community dynamics in rocky intertidal sessile assemblages evaluated by transition matrix models. Popul. Ecol. 52, 171–180 (2010).

    Article 

    Google Scholar 

  • 16.

    Kanamori, Y., Fukaya, K. & Noda, T. Seasonal changes in community structure along a vertical gradient: Patterns and processes in rocky intertidal sessile assemblages. Popul. Ecol. 59, 301–313 (2017).

    Article 

    Google Scholar 

  • 17.

    Menge, B. A. et al. Benthic–pelagic links and rocky intertidal communities: Bottom-up effects on top-down control?. Proc. Natl. Acad. Sci. 94, 14530–14535 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Sanford, E. Regulation of keystone predation by small changes in ocean temperature. Science 283, 2095–2097 (1999).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Menge, B. A. Top-down and bottom-up community regulation in marine rocky intertidal habitats. J. Exp. Mar. Biol. Ecol. 250, 257–289 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Connolly, S. R., Menge, B. A. & Roughgarden, J. A. Latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).

    Article 

    Google Scholar 

  • 21.

    Menge, B. A. et al. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc. Natl. Acad. Sci. 100, 12229–12234 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Nielsen, K. J. & Navarrete, S. A. Mesoscale regulation comes from the bottom-up: Intertidal interactions between consumers and upwelling. Ecol. Lett. 7, 31–41 (2004).

    Article 

    Google Scholar 

  • 23.

    Schoch, G. C. et al. Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnol. Oceanogr. 51, 2564–2585 (2006).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Vinueza, L. R., Menge, B. A., Ruiz, D. & Palacios, D. M. Oceanographic and climatic variation drive top-down/bottom-up coupling in the Galápagos intertidal meta-ecosystem. Ecol. Monogr. 84, 411–434 (2014).

    Article 

    Google Scholar 

  • 25.

    Menge, B. A., Gouhier, T. C., Hacker, S. D., Chan, F. & Nielsen, K. J. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol. Monogr. 85, 213–233 (2015).

    Article 

    Google Scholar 

  • 26.

    Hacker, S. D., Menge, B. A., Nielsen, K. J., Chan, F. & Gouhier, T. C. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology https://doi.org/10.1002/ecy.2763 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Qiu, B. Kuroshio and Oyashio currents. In Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1413–1425 (Academic Press, 2001).

    Chapter 

    Google Scholar 

  • 28.

    Qiu, B. Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr. 32, 353–375 (2002).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Sakurai, Y. An overview of the Oyashio ecosystem. Deep Sea Res. Pt. II 54, 2526–2542 (2007).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Yatsu, A. et al. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 70, 922–933 (2013).

    Article 

    Google Scholar 

  • 31.

    Kawabe, M. Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. J. Oceanogr. 61, 529–537 (2005).

    Article 

    Google Scholar 

  • 32.

    Okunishi, T. et al. Characteristics of oceanographic condition of Tohoku prefecture in 2018. in Bulletin of Liaison Conference of Tohoku Marine Surveys and Technology , Vol. 68, 4–5 (2018) (in Japanese).

  • 33.

    Japan Meteorological Agency. Fluctuations in the Kuroshio Current on a Scale of Months to Decades (Paths). http://www.data.jma.go.jp/gmd/kaiyou/data/shindan/b_2/kuroshio_stream/kuroshio_stream.html (in Japanese, accessed 11 March 2021).

  • 34.

    Taniguchi, K., Sato, M. & Owada, K. On the characteristics of the structural variation in the Eisenia bicyclis population on Joban coast, Japan. Bull Tohoku Natl. Fish. Res. Inst. 48, 49–57 (1986) (in Japanese with English abstract).

    Google Scholar 

  • 35.

    Nomura, K., & Hirabayashi, I. Mass mortality of coral communities caused by abnormality low water temperature observed at Kii peninsula west coast for winter season in 2018. Marine Pavilion. Supplement 7 (2018) (in Japanese).

  • 36.

    Yamaguchi, M. Acanthaster planci infestations of reefs and coral assemblages in Japan: A retrospective analysis of control efforts. Coral Reefs 5, 23–30 (1986).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Ohgaki, S. I. et al. Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan. Ecol. Indic. 96, 684–693 (2019).

    Article 

    Google Scholar 

  • 38.

    Kawajiri, M., Sasaki, T. & Kageyama, Y. Extensive deterioration of Ecklonia kelp stands and death of the plants, and fluctuations in abundance of the abalone off Toji, southern Izu peninsula. Bull. Shizuoka Pref. Fish. Exp. Stn. 15, 19–30 (1981) (in Japanese).

    Google Scholar 

  • 39.

    Takami, H. et al. Overwinter mortality of young-of-the-year Ezo abalone in relation to seawater temperature on the North Pacific coast of Japan. Mar. Ecol. Prog. Ser. 367, 203–212 (2008).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Okuda, T., Noda, T., Yamamoto, T., Ito, N. & Nakaoka, M. Latitudinal gradient of species diversity: Multi-scale variability in rocky intertidal sessile assemblages along the Northwestern Pacific coast. Popul. Ecol. 46, 159–170 (2004).

    Article 

    Google Scholar 

  • 41.

    Nakaoka, M., Ito, N., Yamamoto, T., Okuda, T. & Noda, T. Similarity of rocky intertidal assemblages along the Pacific coast of Japan: Effects of spatial scales and geographic distance. Ecol. Res. 21, 425–435 (2006).

    Article 

    Google Scholar 

  • 42.

    Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315. https://doi.org/10.1126/sciadv.1700315 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Iwasaki, A., Fukaya, K. & Noda, T. Quantitative evaluation of the impact of the Great East Japan Earthquake and tsunami on the rocky intertidal community. In Ecological Impacts of Tsunamis on Coastal Ecosystems (eds Urabe, J. & Nakashizuka, T.) 35–46 (Springer Japan, 2016).

    Chapter 

    Google Scholar 

  • 45.

    Noda, T., Iwasaki, A. & Fukaya, K. Recovery of rocky intertidal zonation: Two years after the 2011 Great East Japan Earthquake. J. Mar. Biol. Assoc. UK 96, 1549–1555 (2016).

    Article 

    Google Scholar 

  • 46.

    Noda, T., Sakaguchi, M., Iwasaki, A. & Fukaya, K. Influence of the 2011 Tohoku Earthquake on population dynamics of a rocky intertidal barnacle: Cause and consequence of alternation in larval recruitment. Coast. Mar. Sci. 40, 35–43 (2017).

    Google Scholar 

  • 47.

    Nuvoloni, F. M., Feres, R. J. F. & Gilbert, B. Species turnover through time: Colonization and extinction dynamics across metacommunities. Am. Nat. 187, 786–796 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Clarke, A. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. A Rev. 21, 341–453 (1983).

    Google Scholar 

  • 49.

    Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).

    Article 

    Google Scholar 

  • 50.

    Bulleri, F. et al. Temporal stability of European rocky shore assemblages: Variation across a latitudinal gradient and the role of habitat-formers. Oikos 121, 1801–1809 (2012).

    Article 

    Google Scholar 

  • 51.

    Noda, T. Spatial hierarchical approach in community ecology: A way beyond high context-dependency and low predictability in local phenomena. Popul. Ecol. 46, 105–117 (2004).

    Article 

    Google Scholar 

  • 52.

    Sahara, R. et al. Larval dispersal dampens population fluctuation and shapes the interspecific spatial distribution patterns of rocky intertidal gastropods. Ecography 39, 487–495 (2015).

    Article 

    Google Scholar 

  • 53.

    Hanawa, K. & Mitsudera, H. Variation of water system distribution in the Sanriku coastal area. J. Oceanogr. 42, 435–446 (1987).

    Article 

    Google Scholar 

  • 54.

    Ohtani, K. Westward inflow of the coastal Oyashio Water into the Tsugaru Strait. Bull. Fac. Fish Hokkaido Univ. 38, 209–220 (1987) (in Japanese with English abstract).

    Google Scholar 

  • 55.

    Takasugi, S. Distribution of Tsugaru Warm Current water in the Iwate coastal area and their influence to sea surface temperature at coastal hydrographic station. Bull. Jpn. Soc. Fish. Oceanogr. 56, 434–448 (1992) (in Japanese with English abstract).

    Google Scholar 

  • 56.

    Takasugi, S. & Yasuda, I. Variation of the Oyashio water in the Iwate coastal region and in the vicinity of east coast of Japan. Bull. Jpn. Soc. Fish. Oceanogr. 58, 253–259 (1994) (in Japanese with English abstract).

    Google Scholar 

  • 57.

    Conlon, D. M. On the outflow modes of the Tsugaru Warm Current. La Mer. 20, 60–64 (1982).

    Google Scholar 

  • 58.

    Isoda, Y. & Suzuki, K. Interannual variations of the Tsugaru gyre. Bull. Fac. Fish. Hokkaido Univ. 55, 71–74 (2004) (in Japanese with English abstract).

    Google Scholar 

  • 59.

    Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).

    Article 

    Google Scholar 

  • 60.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy