Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996).
Google Scholar
Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
Google Scholar
Gunderson, L. H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).
Google Scholar
Thrush, S. F. et al. Forecasting the limits of resilience: Integrating empirical research with theory. Proc. R. Soc. B Biol. Sci. 276, 3209–3217 (2009).
Google Scholar
Bagchi, S. et al. Quantifying long-term plant community dynamics with movement models: Implications for ecological resilience. Ecol. Appl. 27, 1514–1528 (2017).
Google Scholar
Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
Google Scholar
Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
Google Scholar
Radchuk, V. et al. The dimensionality of stability depends on disturbance type. Ecol. Lett. 22, 674–684 (2019).
Google Scholar
Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
Google Scholar
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
Google Scholar
Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).
Google Scholar
Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).
Google Scholar
Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).
Google Scholar
Raffaelli, D. & Hawkins, S. J. Intertidal Ecology (Chapman & Hall, 1996).
Google Scholar
Tsujino, M. et al. Distance decay of community dynamics in rocky intertidal sessile assemblages evaluated by transition matrix models. Popul. Ecol. 52, 171–180 (2010).
Google Scholar
Kanamori, Y., Fukaya, K. & Noda, T. Seasonal changes in community structure along a vertical gradient: Patterns and processes in rocky intertidal sessile assemblages. Popul. Ecol. 59, 301–313 (2017).
Google Scholar
Menge, B. A. et al. Benthic–pelagic links and rocky intertidal communities: Bottom-up effects on top-down control?. Proc. Natl. Acad. Sci. 94, 14530–14535 (1997).
Google Scholar
Sanford, E. Regulation of keystone predation by small changes in ocean temperature. Science 283, 2095–2097 (1999).
Google Scholar
Menge, B. A. Top-down and bottom-up community regulation in marine rocky intertidal habitats. J. Exp. Mar. Biol. Ecol. 250, 257–289 (2000).
Google Scholar
Connolly, S. R., Menge, B. A. & Roughgarden, J. A. Latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).
Google Scholar
Menge, B. A. et al. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc. Natl. Acad. Sci. 100, 12229–12234 (2003).
Google Scholar
Nielsen, K. J. & Navarrete, S. A. Mesoscale regulation comes from the bottom-up: Intertidal interactions between consumers and upwelling. Ecol. Lett. 7, 31–41 (2004).
Google Scholar
Schoch, G. C. et al. Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnol. Oceanogr. 51, 2564–2585 (2006).
Google Scholar
Vinueza, L. R., Menge, B. A., Ruiz, D. & Palacios, D. M. Oceanographic and climatic variation drive top-down/bottom-up coupling in the Galápagos intertidal meta-ecosystem. Ecol. Monogr. 84, 411–434 (2014).
Google Scholar
Menge, B. A., Gouhier, T. C., Hacker, S. D., Chan, F. & Nielsen, K. J. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol. Monogr. 85, 213–233 (2015).
Google Scholar
Hacker, S. D., Menge, B. A., Nielsen, K. J., Chan, F. & Gouhier, T. C. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology https://doi.org/10.1002/ecy.2763 (2019).
Google Scholar
Qiu, B. Kuroshio and Oyashio currents. In Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1413–1425 (Academic Press, 2001).
Google Scholar
Qiu, B. Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr. 32, 353–375 (2002).
Google Scholar
Sakurai, Y. An overview of the Oyashio ecosystem. Deep Sea Res. Pt. II 54, 2526–2542 (2007).
Google Scholar
Yatsu, A. et al. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 70, 922–933 (2013).
Google Scholar
Kawabe, M. Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. J. Oceanogr. 61, 529–537 (2005).
Google Scholar
Okunishi, T. et al. Characteristics of oceanographic condition of Tohoku prefecture in 2018. in Bulletin of Liaison Conference of Tohoku Marine Surveys and Technology , Vol. 68, 4–5 (2018) (in Japanese).
Japan Meteorological Agency. Fluctuations in the Kuroshio Current on a Scale of Months to Decades (Paths). http://www.data.jma.go.jp/gmd/kaiyou/data/shindan/b_2/kuroshio_stream/kuroshio_stream.html (in Japanese, accessed 11 March 2021).
Taniguchi, K., Sato, M. & Owada, K. On the characteristics of the structural variation in the Eisenia bicyclis population on Joban coast, Japan. Bull Tohoku Natl. Fish. Res. Inst. 48, 49–57 (1986) (in Japanese with English abstract).
Nomura, K., & Hirabayashi, I. Mass mortality of coral communities caused by abnormality low water temperature observed at Kii peninsula west coast for winter season in 2018. Marine Pavilion. Supplement 7 (2018) (in Japanese).
Yamaguchi, M. Acanthaster planci infestations of reefs and coral assemblages in Japan: A retrospective analysis of control efforts. Coral Reefs 5, 23–30 (1986).
Google Scholar
Ohgaki, S. I. et al. Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan. Ecol. Indic. 96, 684–693 (2019).
Google Scholar
Kawajiri, M., Sasaki, T. & Kageyama, Y. Extensive deterioration of Ecklonia kelp stands and death of the plants, and fluctuations in abundance of the abalone off Toji, southern Izu peninsula. Bull. Shizuoka Pref. Fish. Exp. Stn. 15, 19–30 (1981) (in Japanese).
Takami, H. et al. Overwinter mortality of young-of-the-year Ezo abalone in relation to seawater temperature on the North Pacific coast of Japan. Mar. Ecol. Prog. Ser. 367, 203–212 (2008).
Google Scholar
Okuda, T., Noda, T., Yamamoto, T., Ito, N. & Nakaoka, M. Latitudinal gradient of species diversity: Multi-scale variability in rocky intertidal sessile assemblages along the Northwestern Pacific coast. Popul. Ecol. 46, 159–170 (2004).
Google Scholar
Nakaoka, M., Ito, N., Yamamoto, T., Okuda, T. & Noda, T. Similarity of rocky intertidal assemblages along the Pacific coast of Japan: Effects of spatial scales and geographic distance. Ecol. Res. 21, 425–435 (2006).
Google Scholar
Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315. https://doi.org/10.1126/sciadv.1700315 (2017).
Google Scholar
Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).
Google Scholar
Iwasaki, A., Fukaya, K. & Noda, T. Quantitative evaluation of the impact of the Great East Japan Earthquake and tsunami on the rocky intertidal community. In Ecological Impacts of Tsunamis on Coastal Ecosystems (eds Urabe, J. & Nakashizuka, T.) 35–46 (Springer Japan, 2016).
Google Scholar
Noda, T., Iwasaki, A. & Fukaya, K. Recovery of rocky intertidal zonation: Two years after the 2011 Great East Japan Earthquake. J. Mar. Biol. Assoc. UK 96, 1549–1555 (2016).
Google Scholar
Noda, T., Sakaguchi, M., Iwasaki, A. & Fukaya, K. Influence of the 2011 Tohoku Earthquake on population dynamics of a rocky intertidal barnacle: Cause and consequence of alternation in larval recruitment. Coast. Mar. Sci. 40, 35–43 (2017).
Nuvoloni, F. M., Feres, R. J. F. & Gilbert, B. Species turnover through time: Colonization and extinction dynamics across metacommunities. Am. Nat. 187, 786–796 (2016).
Google Scholar
Clarke, A. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. A Rev. 21, 341–453 (1983).
Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).
Google Scholar
Bulleri, F. et al. Temporal stability of European rocky shore assemblages: Variation across a latitudinal gradient and the role of habitat-formers. Oikos 121, 1801–1809 (2012).
Google Scholar
Noda, T. Spatial hierarchical approach in community ecology: A way beyond high context-dependency and low predictability in local phenomena. Popul. Ecol. 46, 105–117 (2004).
Google Scholar
Sahara, R. et al. Larval dispersal dampens population fluctuation and shapes the interspecific spatial distribution patterns of rocky intertidal gastropods. Ecography 39, 487–495 (2015).
Google Scholar
Hanawa, K. & Mitsudera, H. Variation of water system distribution in the Sanriku coastal area. J. Oceanogr. 42, 435–446 (1987).
Google Scholar
Ohtani, K. Westward inflow of the coastal Oyashio Water into the Tsugaru Strait. Bull. Fac. Fish Hokkaido Univ. 38, 209–220 (1987) (in Japanese with English abstract).
Takasugi, S. Distribution of Tsugaru Warm Current water in the Iwate coastal area and their influence to sea surface temperature at coastal hydrographic station. Bull. Jpn. Soc. Fish. Oceanogr. 56, 434–448 (1992) (in Japanese with English abstract).
Takasugi, S. & Yasuda, I. Variation of the Oyashio water in the Iwate coastal region and in the vicinity of east coast of Japan. Bull. Jpn. Soc. Fish. Oceanogr. 58, 253–259 (1994) (in Japanese with English abstract).
Conlon, D. M. On the outflow modes of the Tsugaru Warm Current. La Mer. 20, 60–64 (1982).
Isoda, Y. & Suzuki, K. Interannual variations of the Tsugaru gyre. Bull. Fac. Fish. Hokkaido Univ. 55, 71–74 (2004) (in Japanese with English abstract).
Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).
Source: Ecology - nature.com