Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).
Google Scholar
Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).
Google Scholar
Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).
Google Scholar
Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).
Google Scholar
Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).
Google Scholar
Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).
Google Scholar
Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).
Google Scholar
Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).
Google Scholar
WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).
Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).
Google Scholar
Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).
Google Scholar
Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).
Google Scholar
Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).
Google Scholar
Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).
Google Scholar
Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).
Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).
Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).
Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).
Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).
Google Scholar
Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).
Google Scholar
Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).
Google Scholar
Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).
Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).
Google Scholar
Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).
Google Scholar
Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).
Google Scholar
Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).
Google Scholar
Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).
Google Scholar
Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).
Google Scholar
Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).
Google Scholar
Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).
Google Scholar
Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).
Google Scholar
Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).
Google Scholar
Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).
Google Scholar
Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).
Google Scholar
Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).
Google Scholar
Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).
Google Scholar
Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).
Google Scholar
Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).
Google Scholar
de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).
Google Scholar
Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).
Google Scholar
Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).
Google Scholar
Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).
Google Scholar
Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).
Google Scholar
Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).
Google Scholar
Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).
Google Scholar
Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).
Google Scholar
Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).
Google Scholar
Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).
Google Scholar
Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).
Google Scholar
Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).
Google Scholar
Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).
Google Scholar
Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).
Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).
Google Scholar
Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).
Google Scholar
Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).
Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).
Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).
Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).
Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).
Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).
Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).
Google Scholar
LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
Google Scholar
Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).
Google Scholar
Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).
Google Scholar
Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).
Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).
Google Scholar
Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
Google Scholar
Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).
Google Scholar
Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).
Google Scholar
Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).
Google Scholar
Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).
Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).
Google Scholar
Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).
Google Scholar
Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).
Google Scholar
Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).
Google Scholar
Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).
Google Scholar
Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).
Google Scholar
Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).
Google Scholar
Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).
Google Scholar
Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).
Google Scholar
Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).
Google Scholar
Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).
Google Scholar
Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).
Google Scholar
Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).
Source: Ecology - nature.com