in

Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches

  • 1.

    Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).

    Article 

    Google Scholar 

  • 3.

    Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).

    Article 

    Google Scholar 

  • 5.

    Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).

    Article 

    Google Scholar 

  • 6.

    Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).

    Article 

    Google Scholar 

  • 7.

    Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).

    Article 

    Google Scholar 

  • 8.

    Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).

    Google Scholar 

  • 10.

    Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).

    Article 

    Google Scholar 

  • 12.

    Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).

    Book 

    Google Scholar 

  • 13.

    Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).

    Article 

    Google Scholar 

  • 14.

    Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).

    Article 

    Google Scholar 

  • 15.

    Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).

    Google Scholar 

  • 16.

    Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).

    Google Scholar 

  • 17.

    Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).

    Google Scholar 

  • 18.

    Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).

    Google Scholar 

  • 19.

    Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).

    Article 

    Google Scholar 

  • 20.

    Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).

    Article 

    Google Scholar 

  • 21.

    Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).

    Chapter 

    Google Scholar 

  • 22.

    Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).

    Google Scholar 

  • 23.

    Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).

    Article 

    Google Scholar 

  • 28.

    Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).

    Article 

    Google Scholar 

  • 30.

    Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).

    ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 39.

    de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).

    Article 

    Google Scholar 

  • 40.

    Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).

    Article 

    Google Scholar 

  • 50.

    Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).

    Article 

    Google Scholar 

  • 52.

    Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).

    Google Scholar 

  • 53.

    Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).

    Article 

    Google Scholar 

  • 54.

    Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).

    Article 

    Google Scholar 

  • 55.

    Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).

  • 56.

    Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).

    Google Scholar 

  • 57.

    Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).

    Google Scholar 

  • 58.

    Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).

    Google Scholar 

  • 59.

    Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).

    Google Scholar 

  • 60.

    Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).

    Google Scholar 

  • 61.

    Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).

    Google Scholar 

  • 63.

    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Article 

    Google Scholar 

  • 64.

    Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).

    Article 

    Google Scholar 

  • 65.

    Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).

    Article 

    Google Scholar 

  • 66.

    Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).

    Google Scholar 

  • 67.

    Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)

  • 71.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).

    Article 

    Google Scholar 

  • 73.

    Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).

    Google Scholar 

  • 76.

    Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 77.

    Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 79.

    Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 81.

    Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).

    Article 

    Google Scholar 

  • 82.

    Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).

    Article 
    CAS 

    Google Scholar 

  • 84.

    Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).

    Article 

    Google Scholar 

  • 85.

    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).

    Article 

    Google Scholar 

  • 86.

    Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 87.

    Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).

    Google Scholar 

  • 89.

    Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy