Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 37, 637–669 (2006).
Google Scholar
Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 (2007).
Google Scholar
Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 (2012).
Google Scholar
Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290. https://doi.org/10.1890/110278 (2012).
Google Scholar
Zohner, C. M. Phenology and the city. Nat. Ecol. Evol. 3, 1618–1619. https://doi.org/10.1038/s41559-019-1043-7 (2019).
Google Scholar
Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. Lond. B 272, 2561–2569. https://doi.org/10.1098/rspb.2005.3356 (2005).
Google Scholar
Visser, M. E., Holleman, L. J. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).
Google Scholar
Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).
Google Scholar
Renner, S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).
Google Scholar
Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150. https://doi.org/10.1111/j.1523-1739.2007.00852.x (2008).
Google Scholar
Wingfield, J. C. et al. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen. Comp. Endocrinol. 227, 16–26. https://doi.org/10.1016/j.ygcen.2015.10.007 (2016).
Google Scholar
La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88(7), 1803–1812. https://doi.org/10.1890/06-1072.1 (2007).
Google Scholar
Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15(8), 1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x (2009).
Google Scholar
Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105(36), 13492–13496. https://doi.org/10.1073/pnas.0800999105 (2008).
Google Scholar
Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9(2), e1000585. https://doi.org/10.1371/journal.pbio.1000585 (2011).
Google Scholar
Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394 (2003).
Google Scholar
Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Change Biol. 15, 760–771. https://doi.org/10.1111/j.1365-2486.2008.01751.x (2009).
Google Scholar
Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Rev. Ecol. Evol. Syst. 44, 367–368 (2013).
Google Scholar
Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).
Google Scholar
Altmann, J., Alberts, S. C., Altmann, S. A. & Roy, S. B. Dramatic change in local climate patterns in the Amboseli basin, Kenya. Afr. J. Ecol. 40, 248–251. https://doi.org/10.1046/j.1365-2028.2002.00366.x (2002).
Google Scholar
Charmantier, A. R. H. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).
Google Scholar
Balbontin, J. et al. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78, 981–989. https://doi.org/10.1111/j.1365-2656.2009.01573.x (2009).
Google Scholar
Clermont, J., Réale, D. & Giroux, J.-F. Plasticity in laying dates of Canada Geese in response to spring phenology. Ibis 160, 597–607. https://doi.org/10.1111/ibi.12560 (2018).
Google Scholar
Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799. https://doi.org/10.1126/science.3363360 (1988).
Google Scholar
Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626. https://doi.org/10.1111/j.1558-5646.1992.tb02070.x (1991).
Google Scholar
Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B 283, 20161887. https://doi.org/10.1098/rspb.2016.1887 (2016).
Google Scholar
Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190. https://doi.org/10.1111/1365-2435.13406 (2019).
Google Scholar
Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097. https://doi.org/10.1098/rspb.2014.1097 (2014).
Google Scholar
Lameris, T. K. et al. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Oecologia 191, 1003–1014. https://doi.org/10.1007/s00442-019-04533-7 (2019).
Google Scholar
Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Phil. Trans. R. Soc. B 374, 20180178. https://doi.org/10.1098/rstb.2018.0178 (2019).
Google Scholar
Ball, G. F. & Ketterson, E. D. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 36, 3231–3246. https://doi.org/10.1098/rstb.2007.2137 (2007).
Google Scholar
Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, 2010).
Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B 286(1908), 20190952. https://doi.org/10.1098/rspb.2019.0952 (2019).
Google Scholar
Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. https://doi.org/10.1038/nature01333 (2003).
Google Scholar
Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87. https://doi.org/10.1016/S0065-2504(04)35004-X (2004).
Google Scholar
Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B. 266, 2487–2490. https://doi.org/10.1098/rspb.1999.0950 (1999).
Google Scholar
Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110. https://doi.org/10.1016/S0065-2504(04)35005-1 (2004).
Google Scholar
Both, C., Bijlsma, R. G. & Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 36, 368–373. https://doi.org/10.1111/j.0908-8857.2005.03484.x (2005).
Google Scholar
D’Alba, L., Monaghan, P. & Neger, R. G. Advances in laying date and increasing population size suggest positive responses to climate change in Common Eiders Somateria mollissima in Iceland. Ibis 152, 19–28. https://doi.org/10.1111/j.1474-919X.2009.00978.x (2009).
Google Scholar
Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: Date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).
Google Scholar
Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055. https://doi.org/10.1111/1365-2656.12518 (2016).
Google Scholar
Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).
Google Scholar
Perrins, C. M. The timing of birds’ breeding seasons. Ibis 112(2), 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x (1970).
Google Scholar
Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).
Google Scholar
van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 (2009).
Google Scholar
Drent, R. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. TREE 10, 374–378. https://doi.org/10.1016/S0169-5347(00)89141-7 (1995).
Google Scholar
Sergio, F., Blas, J., Forero, M. G., Donzar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821. https://doi.org/10.1093/beheco/arm052 (2007).
Google Scholar
Lorenz, K. Here I Am–Where Are You? (Hartcourt Brace Jovanovich, 1991).
Frigerio, D., Dittami, J., Möstl, E. & Kotrschal, K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen. Comp. Endocrinol. 137, 29–36 (2004).
Google Scholar
Hemetsberger, J. Populationsbiologische Aspekte der Grünauer Graugansschar (Anser anser). PhD Thesis (University of Vienna, 2002).
Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: The role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).
Google Scholar
Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).
Google Scholar
Rozenfeld, S. B. & Sheremetiev, I. S. Barnacle Goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Biol. Bull. Russ. Acad. Sci. 41, 645–656. https://doi.org/10.1134/S106235901408007X (2014).
Google Scholar
Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).
Google Scholar
Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 1, No. 8 (Lynx edicions, 1992).
Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).
Google Scholar
Acquaotta, F., Fratianni, S. & Garzena, D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor. Appl. Climatol. 122(3–4), 619–634. https://doi.org/10.1007/s00704-014-1316-7 (2014).
Google Scholar
Angilletta, M. J. Jr. & Sears, M. W. Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr. Comp. Biol. 51(5), 653–661. https://doi.org/10.1093/icb/icr091 (2011).
Google Scholar
Lack, D. Ecological Adaptations for Breeding in Birds (Methuen, 1968).
Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).
Google Scholar
Drent, R. H. The timing of birds’ breeding seasons: The Perrins hypothesis revisited especially for migrants. Ardea 94, 305–322 (2006).
Prop, J. & de Vries, J. Impact of snow and food conditions on the reproductive performance of Barnacle Geese Branta leucopsis. Ornis Scand. 24, 110–121 (1993).
Google Scholar
Eichhorn, G., van der Jeugd, H. P., Meijer, H. A. J. & Drent, R. H. Fueling Incubation: Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127, 162–172. https://doi.org/10.1525/auk.2009.09057 (2010).
Google Scholar
Newton, I. The role of food in limiting bird numbers. Ardea 68, 11–30. https://doi.org/10.5253/arde.v68.p11 (1980).
Google Scholar
Daunt, F., Wanless, S., Harris, M. & Monaghan, P. Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc. R. Soc. B 266(1427), 1489–1493. https://doi.org/10.1098/rspb.1999.0805 (1999).
Google Scholar
Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76(7), 2240–2246. https://doi.org/10.2307/1941698 (1995).
Google Scholar
Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68(5), 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x (1999).
Google Scholar
Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12(8), 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x (2006).
Google Scholar
Heard, M. J., Riskin, S. H. & Flight, P. A. Identifying potential evolutionary consequences of climate-driven phenological shifts. Evol. Ecol. 26(3), 465–473. https://doi.org/10.1007/s10682-011-9503-9 (2012).
Google Scholar
McLean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19(6), 595–608. https://doi.org/10.1111/ele.12599 (2016).
Google Scholar
Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151. https://doi.org/10.1111/ecog.02411 (2017).
Google Scholar
Cunningham, S. J., Madden, C. F., Barnard, P. & Amar, A. Electric crows: Powerlines, climate change and the emergence of a native invader. Divers. Distrib. 22, 17–29. https://doi.org/10.1111/ddi.12381 (2016).
Google Scholar
Gienapp, P. & Brommer, J. E. Evolutionary dynamics in response to climate change. In Quantitative Genetics in the Wild, 254–273 (Oxford University Press, 2014)
Tombre, I. M., Erikstad, K. E. & Bunes, V. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985–992. https://doi.org/10.1007/s00300-011-1145-4 (2012).
Google Scholar
Poussart, C., Gauthier, G. & Larochelle, J. Incubation behaviour of greater snow geese in relation to weather conditions. Can. J. Zool. 79(4), 671–678. https://doi.org/10.1139/z01-023 (2001).
Google Scholar
Lamprecht, J. Predicting current reproductive success of goose Pairs Anser indicus from male and female reproductive history. Ethology 85, 123–131 (1990).
Google Scholar
Daunt, F., Wanless, S., Harris, M. P., Money, L. & Monaghan, P. Older and wiser: Improvements in breeding success are linked to better foraging performance in European shags. Funct. Ecol. 21, 561–567. https://doi.org/10.1111/j.1365-2435.2007.01260.x (2007).
Google Scholar
Sæther, B.-E. Age-specific variation in reproductive performance of birds. Curr. Ornithol. 7, 251–283 (1990).
Goutte, A., Antoine, E., Weimerskirch, H. & Chastel, O. Age and the timing of breeding in a long-lived bird: A role for stress hormones?. Funct. Ecol. 24, 1007–1016. https://doi.org/10.1111/j.1365-2435.2010.01712.x (2010).
Google Scholar
Szipl, G. et al. Parental behaviour and family proximity as key to reproductive success in Greylag geese (Anser anser). J. Ornithol. 160, 473. https://doi.org/10.1007/s10336-019-01638-x (2019).
Google Scholar
Fletcher, Q. E. & Selman, C. Aging in the wild: Insights from free-living and non-model organisms. Exp. Gerontol. 71, 1–3. https://doi.org/10.1016/j.exger.2015.09.015 (2015).
Google Scholar
Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008. https://doi.org/10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2() (1997).
Google Scholar
Van de Pol, M. & Verhulst, S. Age-dependent traits: A new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773. https://doi.org/10.1086/503331 (2006).
Google Scholar
Schoech, S. J. & Hahn, T. P. Food supplementation and timing of reproduction: Does the responsiveness to supplementary information vary with latitude?. J. Ornithol. 148, 625–632. https://doi.org/10.1007/s10336-007-0177-6 (2007).
Google Scholar
Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28(15), 2467-2473.e4. https://doi.org/10.1016/j.cub.2018.05.077 (2018).
Google Scholar
Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob Change Biol. 24, 3780–3790. https://doi.org/10.1111/gcb.14160 (2018).
Google Scholar
Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).
Google Scholar
Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272. https://doi.org/10.1111/gcb.13302 (2016).
Google Scholar
Hemetsberger, J., Weiß, B. M. & Scheiber, I. B. R. Greylag geese: from general principles to the Konrad Lorenz flock. In The social life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).
Google Scholar
Scheiber, I. B. R. “Tend and befriend”: the importance of social allies in coping with social stress. In The Social Life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian Model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).
Google Scholar
R Development Core Team. A Language and Environment for Statistical Computing. R version 4.1.0 (R Foundation for Statistical Computing, 2021).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).
Google Scholar
Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).
Google Scholar
Zuur, A. F., Ieno, E. N. & Freckleton, R. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645. https://doi.org/10.1111/2041-210x.12577 (2016).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
Google Scholar
Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Soft. 34(2), 1–24 (2010).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd ed. https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (2019).
Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Google Scholar
Tremblay, A., Statistics Canada, Ransijn, J. & University of Copenhagen. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).
Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Performance: Assessment of Regression Models Performance. R package version 0.4 5 (2020).
Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).
Google Scholar
Morrissey, M. B. & Ruxton, G. D. Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0010.003 (2018).
Google Scholar
Barton, K. MuMIn: Multi-model Inference. R package version 1.10.5 (2014).
Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.0-1. (2014).
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Corrigendum to “Multimodel inference in ecology and evolution: Challenges and solutions”. J. Evol. Biol. 24, 1627–1627 (2011).
Google Scholar
Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, In R package version 2.8.7. (2021)
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
Google Scholar
Anderson, D. R., Link, W. A., Johnson, D. H. & Burnham, K. P. Suggestions for presenting the results of data analyses. J. Wildl. Manag. 65, 373–378. https://doi.org/10.2307/3803088 (2001).
Google Scholar
Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).
Google Scholar
Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11(1), 54–71. https://doi.org/10.1037/1082-989X.11.1.54 (2006).
Google Scholar
Harris, M. P., Albon, S. D. & Wanless, S. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311–318. https://doi.org/10.1080/00063657.2016.1202889 (2016).
Google Scholar
Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. https://doi.org/10.1111/jav.02247 (2019).
Google Scholar
Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744. https://doi.org/10.1007/s00265-016-2096-0 (2016).
Google Scholar
Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182(5), E161–E173. https://doi.org/10.1086/673263 (2013).
Google Scholar
Frigerio, D. et al. From individual to population level: temperature and snow cover modulate fledging success through breeding phenology in Greylag geese (Anser anser), Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbztd (2021).
Source: Ecology - nature.com