in

From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser)

  • 1.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 37, 637–669 (2006).

    Article 

    Google Scholar 

  • 3.

    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 (2012).

    Article 

    Google Scholar 

  • 5.

    Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290. https://doi.org/10.1890/110278 (2012).

    Article 

    Google Scholar 

  • 6.

    Zohner, C. M. Phenology and the city. Nat. Ecol. Evol. 3, 1618–1619. https://doi.org/10.1038/s41559-019-1043-7 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. Lond. B 272, 2561–2569. https://doi.org/10.1098/rspb.2005.3356 (2005).

    Article 

    Google Scholar 

  • 8.

    Visser, M. E., Holleman, L. J. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 10.

    Renner, S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).

    Article 

    Google Scholar 

  • 11.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150. https://doi.org/10.1111/j.1523-1739.2007.00852.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Wingfield, J. C. et al. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen. Comp. Endocrinol. 227, 16–26. https://doi.org/10.1016/j.ygcen.2015.10.007 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88(7), 1803–1812. https://doi.org/10.1890/06-1072.1 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15(8), 1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x (2009).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105(36), 13492–13496. https://doi.org/10.1073/pnas.0800999105 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9(2), e1000585. https://doi.org/10.1371/journal.pbio.1000585 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394 (2003).

    Article 

    Google Scholar 

  • 19.

    Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Change Biol. 15, 760–771. https://doi.org/10.1111/j.1365-2486.2008.01751.x (2009).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Rev. Ecol. Evol. Syst. 44, 367–368 (2013).

    Article 

    Google Scholar 

  • 21.

    Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Altmann, J., Alberts, S. C., Altmann, S. A. & Roy, S. B. Dramatic change in local climate patterns in the Amboseli basin, Kenya. Afr. J. Ecol. 40, 248–251. https://doi.org/10.1046/j.1365-2028.2002.00366.x (2002).

    Article 

    Google Scholar 

  • 23.

    Charmantier, A. R. H. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Balbontin, J. et al. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78, 981–989. https://doi.org/10.1111/j.1365-2656.2009.01573.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Clermont, J., Réale, D. & Giroux, J.-F. Plasticity in laying dates of Canada Geese in response to spring phenology. Ibis 160, 597–607. https://doi.org/10.1111/ibi.12560 (2018).

    Article 

    Google Scholar 

  • 26.

    Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799. https://doi.org/10.1126/science.3363360 (1988).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626. https://doi.org/10.1111/j.1558-5646.1992.tb02070.x (1991).

    Article 

    Google Scholar 

  • 28.

    Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B 283, 20161887. https://doi.org/10.1098/rspb.2016.1887 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190. https://doi.org/10.1111/1365-2435.13406 (2019).

    Article 

    Google Scholar 

  • 30.

    Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097. https://doi.org/10.1098/rspb.2014.1097 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Lameris, T. K. et al. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Oecologia 191, 1003–1014. https://doi.org/10.1007/s00442-019-04533-7 (2019).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Phil. Trans. R. Soc. B 374, 20180178. https://doi.org/10.1098/rstb.2018.0178 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Ball, G. F. & Ketterson, E. D. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 36, 3231–3246. https://doi.org/10.1098/rstb.2007.2137 (2007).

    Article 

    Google Scholar 

  • 34.

    Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, 2010).

    Google Scholar 

  • 35.

    Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B 286(1908), 20190952. https://doi.org/10.1098/rspb.2019.0952 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. https://doi.org/10.1038/nature01333 (2003).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87. https://doi.org/10.1016/S0065-2504(04)35004-X (2004).

    Article 

    Google Scholar 

  • 38.

    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B. 266, 2487–2490. https://doi.org/10.1098/rspb.1999.0950 (1999).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110. https://doi.org/10.1016/S0065-2504(04)35005-1 (2004).

    Article 

    Google Scholar 

  • 40.

    Both, C., Bijlsma, R. G. & Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 36, 368–373. https://doi.org/10.1111/j.0908-8857.2005.03484.x (2005).

    Article 

    Google Scholar 

  • 41.

    D’Alba, L., Monaghan, P. & Neger, R. G. Advances in laying date and increasing population size suggest positive responses to climate change in Common Eiders Somateria mollissima in Iceland. Ibis 152, 19–28. https://doi.org/10.1111/j.1474-919X.2009.00978.x (2009).

    Article 

    Google Scholar 

  • 42.

    Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: Date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).

    Article 

    Google Scholar 

  • 43.

    Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055. https://doi.org/10.1111/1365-2656.12518 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 44.

    Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Perrins, C. M. The timing of birds’ breeding seasons. Ibis 112(2), 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x (1970).

    Article 

    Google Scholar 

  • 46.

    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).

    Article 

    Google Scholar 

  • 47.

    van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 (2009).

    Article 

    Google Scholar 

  • 48.

    Drent, R. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).

    Google Scholar 

  • 49.

    Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. TREE 10, 374–378. https://doi.org/10.1016/S0169-5347(00)89141-7 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Sergio, F., Blas, J., Forero, M. G., Donzar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821. https://doi.org/10.1093/beheco/arm052 (2007).

    Article 

    Google Scholar 

  • 51.

    Lorenz, K. Here I Am–Where Are You? (Hartcourt Brace Jovanovich, 1991).

    Google Scholar 

  • 52.

    Frigerio, D., Dittami, J., Möstl, E. & Kotrschal, K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen. Comp. Endocrinol. 137, 29–36 (2004).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Hemetsberger, J. Populationsbiologische Aspekte der Grünauer Graugansschar (Anser anser). PhD Thesis (University of Vienna, 2002).

  • 54.

    Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: The role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).

    Article 

    Google Scholar 

  • 56.

    Rozenfeld, S. B. & Sheremetiev, I. S. Barnacle Goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Biol. Bull. Russ. Acad. Sci. 41, 645–656. https://doi.org/10.1134/S106235901408007X (2014).

    Article 

    Google Scholar 

  • 57.

    Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 1, No. 8 (Lynx edicions, 1992).

  • 59.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).

    Article 

    Google Scholar 

  • 60.

    Acquaotta, F., Fratianni, S. & Garzena, D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor. Appl. Climatol. 122(3–4), 619–634. https://doi.org/10.1007/s00704-014-1316-7 (2014).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Angilletta, M. J. Jr. & Sears, M. W. Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr. Comp. Biol. 51(5), 653–661. https://doi.org/10.1093/icb/icr091 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 62.

    Lack, D. Ecological Adaptations for Breeding in Birds (Methuen, 1968).

    Google Scholar 

  • 63.

    Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).

    Article 

    Google Scholar 

  • 64.

    Drent, R. H. The timing of birds’ breeding seasons: The Perrins hypothesis revisited especially for migrants. Ardea 94, 305–322 (2006).

    Google Scholar 

  • 65.

    Prop, J. & de Vries, J. Impact of snow and food conditions on the reproductive performance of Barnacle Geese Branta leucopsis. Ornis Scand. 24, 110–121 (1993).

    Article 

    Google Scholar 

  • 66.

    Eichhorn, G., van der Jeugd, H. P., Meijer, H. A. J. & Drent, R. H. Fueling Incubation: Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127, 162–172. https://doi.org/10.1525/auk.2009.09057 (2010).

    Article 

    Google Scholar 

  • 67.

    Newton, I. The role of food in limiting bird numbers. Ardea 68, 11–30. https://doi.org/10.5253/arde.v68.p11 (1980).

    Article 

    Google Scholar 

  • 68.

    Daunt, F., Wanless, S., Harris, M. & Monaghan, P. Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc. R. Soc. B 266(1427), 1489–1493. https://doi.org/10.1098/rspb.1999.0805 (1999).

    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76(7), 2240–2246. https://doi.org/10.2307/1941698 (1995).

    Article 

    Google Scholar 

  • 70.

    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68(5), 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x (1999).

    Article 

    Google Scholar 

  • 71.

    Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12(8), 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x (2006).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Heard, M. J., Riskin, S. H. & Flight, P. A. Identifying potential evolutionary consequences of climate-driven phenological shifts. Evol. Ecol. 26(3), 465–473. https://doi.org/10.1007/s10682-011-9503-9 (2012).

    Article 

    Google Scholar 

  • 73.

    McLean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19(6), 595–608. https://doi.org/10.1111/ele.12599 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 74.

    Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151. https://doi.org/10.1111/ecog.02411 (2017).

    Article 

    Google Scholar 

  • 75.

    Cunningham, S. J., Madden, C. F., Barnard, P. & Amar, A. Electric crows: Powerlines, climate change and the emergence of a native invader. Divers. Distrib. 22, 17–29. https://doi.org/10.1111/ddi.12381 (2016).

    Article 

    Google Scholar 

  • 76.

    Gienapp, P. & Brommer, J. E. Evolutionary dynamics in response to climate change. In Quantitative Genetics in the Wild, 254–273 (Oxford University Press, 2014)

  • 77.

    Tombre, I. M., Erikstad, K. E. & Bunes, V. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985–992. https://doi.org/10.1007/s00300-011-1145-4 (2012).

    Article 

    Google Scholar 

  • 78.

    Poussart, C., Gauthier, G. & Larochelle, J. Incubation behaviour of greater snow geese in relation to weather conditions. Can. J. Zool. 79(4), 671–678. https://doi.org/10.1139/z01-023 (2001).

    Article 

    Google Scholar 

  • 79.

    Lamprecht, J. Predicting current reproductive success of goose Pairs Anser indicus from male and female reproductive history. Ethology 85, 123–131 (1990).

    Article 

    Google Scholar 

  • 80.

    Daunt, F., Wanless, S., Harris, M. P., Money, L. & Monaghan, P. Older and wiser: Improvements in breeding success are linked to better foraging performance in European shags. Funct. Ecol. 21, 561–567. https://doi.org/10.1111/j.1365-2435.2007.01260.x (2007).

    Article 

    Google Scholar 

  • 81.

    Sæther, B.-E. Age-specific variation in reproductive performance of birds. Curr. Ornithol. 7, 251–283 (1990).

    Google Scholar 

  • 82.

    Goutte, A., Antoine, E., Weimerskirch, H. & Chastel, O. Age and the timing of breeding in a long-lived bird: A role for stress hormones?. Funct. Ecol. 24, 1007–1016. https://doi.org/10.1111/j.1365-2435.2010.01712.x (2010).

    Article 

    Google Scholar 

  • 83.

    Szipl, G. et al. Parental behaviour and family proximity as key to reproductive success in Greylag geese (Anser anser). J. Ornithol. 160, 473. https://doi.org/10.1007/s10336-019-01638-x (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Fletcher, Q. E. & Selman, C. Aging in the wild: Insights from free-living and non-model organisms. Exp. Gerontol. 71, 1–3. https://doi.org/10.1016/j.exger.2015.09.015 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 85.

    Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008. https://doi.org/10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2() (1997).

    Article 

    Google Scholar 

  • 86.

    Van de Pol, M. & Verhulst, S. Age-dependent traits: A new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773. https://doi.org/10.1086/503331 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 87.

    Schoech, S. J. & Hahn, T. P. Food supplementation and timing of reproduction: Does the responsiveness to supplementary information vary with latitude?. J. Ornithol. 148, 625–632. https://doi.org/10.1007/s10336-007-0177-6 (2007).

    Article 

    Google Scholar 

  • 88.

    Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28(15), 2467-2473.e4. https://doi.org/10.1016/j.cub.2018.05.077 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 89.

    Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob Change Biol. 24, 3780–3790. https://doi.org/10.1111/gcb.14160 (2018).

    ADS 
    Article 

    Google Scholar 

  • 90.

    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 91.

    Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272. https://doi.org/10.1111/gcb.13302 (2016).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Hemetsberger, J., Weiß, B. M. & Scheiber, I. B. R. Greylag geese: from general principles to the Konrad Lorenz flock. In The social life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).

    Chapter 

    Google Scholar 

  • 93.

    Scheiber, I. B. R. “Tend and befriend”: the importance of social allies in coping with social stress. In The Social Life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian Model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).

    Chapter 

    Google Scholar 

  • 94.

    R Development Core Team. A Language and Environment for Statistical Computing. R version 4.1.0 (R Foundation for Statistical Computing, 2021).

    Google Scholar 

  • 95.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).

    MathSciNet 
    Article 

    Google Scholar 

  • 96.

    Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).

    MathSciNet 
    Article 

    Google Scholar 

  • 97.

    Zuur, A. F., Ieno, E. N. & Freckleton, R. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645. https://doi.org/10.1111/2041-210x.12577 (2016).

    Article 

    Google Scholar 

  • 98.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 99.

    Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Soft. 34(2), 1–24 (2010).

    Article 

    Google Scholar 

  • 100.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).

    Google Scholar 

  • 101.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd ed. https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (2019).

  • 102.

    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).

    Book 

    Google Scholar 

  • 103.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    Book 

    Google Scholar 

  • 104.

    Tremblay, A., Statistics Canada, Ransijn, J. & University of Copenhagen. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).

  • 105.

    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Performance: Assessment of Regression Models Performance. R package version 0.4 5 (2020).

  • 106.

    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • 107.

    Morrissey, M. B. & Ruxton, G. D. Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0010.003 (2018).

    Article 

    Google Scholar 

  • 108.

    Barton, K. MuMIn: Multi-model Inference. R package version 1.10.5 (2014).

  • 109.

    Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.0-1. (2014).

  • 110.

    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Corrigendum to “Multimodel inference in ecology and evolution: Challenges and solutions”. J. Evol. Biol. 24, 1627–1627 (2011).

    Article 

    Google Scholar 

  • 111.

    Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, In R package version 2.8.7. (2021)

  • 112.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 113.

    Anderson, D. R., Link, W. A., Johnson, D. H. & Burnham, K. P. Suggestions for presenting the results of data analyses. J. Wildl. Manag. 65, 373–378. https://doi.org/10.2307/3803088 (2001).

    Article 

    Google Scholar 

  • 114.

    Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).

    Article 

    Google Scholar 

  • 115.

    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11(1), 54–71. https://doi.org/10.1037/1082-989X.11.1.54 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 116.

    Harris, M. P., Albon, S. D. & Wanless, S. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311–318. https://doi.org/10.1080/00063657.2016.1202889 (2016).

    Article 

    Google Scholar 

  • 117.

    Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. https://doi.org/10.1111/jav.02247 (2019).

    Article 

    Google Scholar 

  • 118.

    Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744. https://doi.org/10.1007/s00265-016-2096-0 (2016).

    Article 

    Google Scholar 

  • 119.

    Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182(5), E161–E173. https://doi.org/10.1086/673263 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 120.

    Frigerio, D. et al. From individual to population level: temperature and snow cover modulate fledging success through breeding phenology in Greylag geese (Anser anser), Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbztd (2021).


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy