Smith, B. D. Documenting plant domestication: The consilience of biological and archaeological approaches. Proc. Natl Acad. Sci. USA 98, 1324–1326 (2001).
Google Scholar
Darwin, C. R. On the Origins of the Species. (John Murray, 1859).
Venable, D. L. & Lawlor, L. Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46, 272–282 (1980).
Google Scholar
Ellner, S. ESS germination strategies in randomly varying environments.1. Logist.Type models Theor. Popul. Biol. 28, 50–79 (1985).
Google Scholar
Levin, D. A. Seed bank as a source of genetic novelty in plants. Am. Nat. 135, 563–572 (1990).
Google Scholar
Evans, M. E. K., Ferriere, R., Kane, M. J. & Venable, D. L. Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. Am. Nat. 169, 84–94 (2007). Simulations and field data support bet-hedging via dormancy.
Google Scholar
Kortessis, N. & Chesson, P. Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition. Theor. Popul. Biol. 130, 60–73 (2019).
Google Scholar
Peres, S. Saving the gene pool for the future: Seed banks as archives. Stud. Hist. Philos. Sci. Part C. Stud. Hist. Philos. Biol. Biomed. Sci. 55, 96–104 (2016).
Google Scholar
Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).
Google Scholar
Ginsburg, I., Lingam, M. & Loeb, A. Galactic Panspermia. Astrophys. J. Lett. 868 (2018).
Maslov, S. & Sneppen, K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5, 10523 (2015).
Google Scholar
Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).
Google Scholar
Sriram, R., Shoff, M., Booton, G., Fuerst, P. & Visvesvara, G. S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 46, 4045–4048 (2008).
Google Scholar
Storey, K. B. Life in the slow lane: molecular mechanisms of estivation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 733–754 (2002).
Google Scholar
Hu, P. J. In WormBook (ed The C. elegans Research Community) (2007).
Gilbert, J. J. Dormancy in rotifers. Trans. Am. Microsc. Soc. 93, 490–513 (1974).
Google Scholar
Kostal, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).
Google Scholar
Schleucher, E. Torpor in birds: taxonomy, energetics, and ecology. Physiol. Biochem. Zool. 77, 942–949 (2004).
Google Scholar
Cooke, S. J., Grant, E. C., Schreer, J. F., Philipp, D. P. & Devries, A. L. Low temperature cardiac response to exhaustive exercise in fish with different levels of winter quiescence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134, 159–167 (2003).
Google Scholar
Fenelon, J. C., Banerjee, A. & Murphy, B. D. Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174 (2014).
Google Scholar
Andrews, M. T. Advances in molecular biology of hibernation in mammals. Bioessays 29, 431–440 (2007).
Google Scholar
Sottocornola, R. & Lo Celso, C. Dormancy in the stem cell niche. Stem Cell Res. Ther. 3, 10 (2012).
Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020). Review discussing importance of dormancy for persistence and dispersal of cancer cells with clinical applications.
Google Scholar
Darby, I. A. & Hewitson, T. D. Fibroblast differentiation in wound healing and fibrosis. Int Rev. Cytol. 257, 143–179 (2007).
Google Scholar
Chapman, N. M., Boothby, M. R. & Chi, H. B. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).
Google Scholar
Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 777–784 (2006).
Google Scholar
Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109-114 (2020).
Seger, J. & Brockmann, J. H. What is bet-hedging? In Oxford Surveys in Evolutionary Biology (eds Harvey P. H. & Partridge L.) Vol. 4, 182–211 (Oxford University Press, 1987). Comprehensive review of bet-hedging in population biology.
Considine, M. J. & Considine, J. A. On the language and physiology of dormancy and quiescence in plants. J. Exp. Bot. 67, 3189–3203 (2016).
Google Scholar
Cohen, D. Optimizing reproduction in a randomly varying environment. Theor. Biol. 12, 119–129 (1966). Among the first mathematical models describing the benefits of delayed seed germination.
Google Scholar
Amen, R. D. A model of seed dormancy. Bot. Rev. 34, 1–31 (1968).
Google Scholar
Bulmer, M. G. Delayed germination of seeds: Cohen’s model revisited. Theor. Popul. Biol. 26, 367–377 (1984).
Google Scholar
Philippi, T. Bet-hedging germination of desert annuals: beyond the 1st year. Am. Nat. 142, 474–487 (1993).
Google Scholar
Rajon, E., Venner, S. & Menu, F. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy. J. Evol. Biol. 22, 2094–2103 (2009).
Google Scholar
Blath, J., González Casanova, A., Eldon, B., Kurt, N. & Wilke-Berenguer, M. Genetic variability under the seedbank coalescent. Genetics 200, 921–934 (2015).
Google Scholar
Locey, K. J., Fisk, M. C. & Lennon, J. T. Microscale insight into microbial seed banks. Front. Microbiol. 7, 2040 (2017).
Google Scholar
Yamamichi, M., Hairston, N. G., Rees, M. & Ellner, S. P. Rapid evolution with generation overlap: the double-edged effect of dormancy. Theor. Ecol. 12, 179–195 (2019). Models explore how dormancy and environmental fluctuations affect the rate of trait evolution and adaptation.
Google Scholar
Wörmer, L. et al. Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial. Sci. Adv. 5, eaav1024 (2019).
Google Scholar
Baskin, C. C. & Baskin, J. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination. 1600 (Academic Press, 2014). Comprehensive book covering the causes and consequences of dormancy in plants.
Magurran, A. E. Measuring Biological Diversity. (Blackwell Publishing, 2004).
Hoyle, G. L. et al. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Glob. Change Biol. 19, 1549–1561 (2013).
Google Scholar
Haaland, T. R., Wright, J. & Ratikainen, I. I. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc. R. Soc. B Biol. Sci. 286, 20192070 (2019).
Google Scholar
Childs, D. Z., Metcalf, C. J. E. & Rees, M. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proc. R. Soc. B Biol. Sci. 277, 3055–3064 (2010).
Google Scholar
Starrfelt, J. & Kokko, H. Bet-hedging – a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).
Google Scholar
Cooper, W. S. & Kaplan, R. H. Adaptive coin-flipping: a decision-theoretic examination of natural selection for random individual variation. J. Theor. Biol. 94, 135–151 (1982).
Google Scholar
Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).
Google Scholar
Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005). Model showing that stochastic transitioning into dormancy is beneficial in fluctuating environments.
Google Scholar
Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009).
Google Scholar
Jost, J. & Wang, Y. Optimization and phenotype allocation. Bull. Math. Biol. 76, 184–200 (2014).
Google Scholar
Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).
Google Scholar
Epstein, S. S. Microbial awakenings. Nature 457, 1083–1083 (2009).
Google Scholar
Buerger, S. et al. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl. Environ. Microbiol. 78, 3221–3228 (2012).
Google Scholar
Chevin, L. M. & Hoffman, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. Lond. 372, 1723 (2017).
Google Scholar
Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).
Google Scholar
Baskin, J. M. & Baskin, C. C. The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35, 492–498 (1985).
Google Scholar
Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K. & Ayele, B. T. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front. Plant Sci. 9, 668 (2018).
Samuels, I. A. & Levey, D. J. Effects of gut passage on seed germination: do experiments answer the questions they ask? Funct. Ecol. 19, 365–368 (2005).
Google Scholar
Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell 121, 401–409 (2005).
Google Scholar
McKenney, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11, 33–44 (2013).
Google Scholar
Locey, K. J. & Lennon, J. T. A residence time theory for biodiversity. Am. Nat. 194, 59–72 (2019).
Google Scholar
Levin, B. R. et al. A numbers game: ribosome densities, bacterial growth, and antibiotic-mediated stasis and death. mBio. 8, e02253-16 (2017).
Rambo, I. M., Marsh, A. & Biddle, J. F. Cytosine methylation within marine sediment microbial communities: potential epigenetic adaptation to the environment. Front. Microbiol. 10, 1291 (2019).
Wisnoski, N. I., Leibold, M. A. & Lennon, J. T. Dormancy in metacommunities. Am. Nat. 194, 135–151 (2019).
Google Scholar
Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).
Google Scholar
Locey, K. J. et al. Dormancy dampens the microbial distance-decay relationship. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190243 (2020). Combined field and modeling approach demonstrating that dormancy can alter biogeographic patterns.
Chihara, K., Matsumoto, S., Kagawa, Y. & Tsuneda, S. Mathematical modeling of dormant cell formation in growing biofilm. Front. Microbiol. 6, 534 (2015).
Google Scholar
Frank, S. A. Metabolic heat in microbial conflict and cooperation. Front. Ecol. Evolution 8, 275 (2020).
Google Scholar
Maki, H. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu. Rev. Genet. 36, 279–303 (2002).
Google Scholar
Foster, P. L. Stress responses and genetic variation in bacteria. Mutat. Res. Fundam. Mol. Mech. Mutagen. 569, 3–11 (2005).
Google Scholar
Ryan, F. J. Spontaneous mutation in non-dividing bacteria. Genetics 40, 726–738 (1955).
Google Scholar
Gangloff, S. et al. Quiescence unveils a novel mutational force in fission yeast. eLife 6, e27469 (2017).
Google Scholar
Long, H. A. et al. Evolutionary determinants of genome-wide nucleotide composition. Nat. Ecol. Evol. 2, 237–240 (2018).
Google Scholar
Shoemaker, W. R. & Lennon, J. T. Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol. Appl. 11, 60–75 (2018).
Google Scholar
Tellier, A., Laurent, S. J. Y., Lainer, H., Pavllidis, P. & Stephan, W. Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc. Natl. Acad. Sci. USA 108, 17052-17057 (2011). Infers seed bank quantities based on a coalescent theoretical model.
Sellinger, T. P. P., Abu Awad, D., Moest, M. & Tellier, A. Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data. PLoS Genet. 16, e1008698 (2020).
Blath, J., Buzzoni, E., Koskela, J. & Berenguer, M. W. Statistical tools for seed bank detection. Theor. Popul. Biol. 132, 1–15 (2020).
Google Scholar
Templeton, A. R. & Levin, D. A. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).
Google Scholar
Hairston, N. G. & Destasio, B. T. Rate of evolution slowed by dormant propagule pool. Nature 336, 239–242 (1988). Field evidence that dormancy and species interactions affect rates of evolution.
Google Scholar
Turelli, M., Schemske, D. W. & Bierzychudek, P. Stable two-allele polymorphisms maintained by fluctuating fitnesses and seed banks: Protecting the blues in Linanthus parryae. Evolution 55, 1283–1298 (2001).
Google Scholar
Sundqvist, L., Godhe, A., Jonsson, P. R. & Sefbom, J. The anchoring effect-long-term dormancy and genetic population structure. ISME J. 12, 2929–2941 (2018).
Google Scholar
Maughan, H. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61, 280–288 (2007).
Google Scholar
Weller, C. & Wu, M. A generation-time effect on the rate of molecular evolution in bacteria. Evolution 69, 643–652 (2015). Phylogenetic comparative approach demonstrating that dormancy reduces rates of evolution.
Google Scholar
Willis, C. G. et al. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309 (2014).
Google Scholar
Kalisz, S. & McPeek, M. A. Demography of an age-structured annual: resampled projection matrices, elasticity analyses, and seed bank effects. Ecology 73, 1082–1093 (1992).
Google Scholar
Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).
Google Scholar
Moriuchi, K. S., Venable, D. L., Pake, C. E. & Lange, T. Direct measurement of the seed bank age structure of a Sonoran desert annual plant. Ecology 81, 1133–1138 (2000).
Google Scholar
Moger-Reischer, R. Z. & Lennon, J. T. Microbial ageing and longevity. Nat. Rev. Microbiol. 17, 679–690 (2019).
Google Scholar
Dalling, J. W., Davis, A. S., Schutte, B. J. & Arnold, A. E. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J. Ecol. 99, 89–95 (2011).
Google Scholar
Hairston, N. G. & Kearns, C. M. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr. Comp. Biol. 42, 481–491 (2002).
Google Scholar
Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).
Wright, E. S. & Vetsigian, K. H. Stochastic exits from dormancy give rise to heavy-tailed distributions of descendants in bacterial populations. Mol. Ecol. 28, 3915–3928 (2019).
Google Scholar
Cordero, F., Cassanova, A. G., Schweinsberg, J. & Wilke-Berenguer, M. Λ-coalescents arising in populations with dormancy. Preprint at https://arxiv.org/abs/2009.09418 (2020).
Blath, J., Buzzoni, E., Gonzalez Casanova, A. & Wilke-Berenguer, M. Separation of time-scales for the seed bank diffusion and its jump-diffusion limit. J Math Biol. 82, 53 (2021).
Rogalski, M. A. Maladaptation to acute metal exposure in resurrected Daphnia ambigua clones after decades of increasing contamination. Am. Nat. 189, 443–452 (2017).
Google Scholar
Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).
Google Scholar
Warner, R. R. & Chesson, P. L. Coexistence mediated by recruitment fluctuation: a field guide to the storage effect. Am. Nat. 125, 769–787 (1985).
Google Scholar
Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994). Describes models of competition and coexistence, including the storage effect, which often involves dormancy in fluctuating environments.
Google Scholar
Pake, C. E. & Venable, D. L. Is coexistence of Sonoran Desert annuals mediated by temporal variability in reproductive success? Ecology 76, 246–261 (1995).
Google Scholar
Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. F. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).
Google Scholar
Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997). Dormancy in lake zooplankton contributes to maintenance of diversity via the storage effect.
Google Scholar
Jiang, L. & Morin, P. J. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76, 660–668 (2007).
Google Scholar
Kuwamura, M., Nakazawa, T. & Ogawa, T. A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009).
Google Scholar
Gulbudak, H. & Weitz, J. S. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc. R. Soc. B Biol. Sci. 283, 20161037 (2016).
Kuwamura, M. & Nakazawa, T. Dormancy of predators dependent on the rate of variation in prey density. SIAM J. Appl. Math. 71, 169–179 (2011).
Google Scholar
McCauley, E., Nisbet, R. M., Murdoch, W. W., de Roos, A. M. & Gurney, W. S. C. Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999).
Verin, M. & Tellier, A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 72, 1362–1372 (2018).
Google Scholar
Bautista, M. A., Zhang, C. Y. & Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. mBio. 6, e02565–14 (2015).
Google Scholar
Rengefors, K., Karlsson, I. & Hansson, L. A. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. B Biol. Sci. 265, 1353–1358 (1998).
Google Scholar
Dzialowski, A. R., Lennon, J. T., O’Brien, W. J. & Smith, V. H. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshwat. Biol. 48, 1593–1602 (2003).
Google Scholar
Sellinger, T., Muller, J., Hosel, V. & Tellier, A. Are the better cooperators dormant or quiescent? Math. Biosci. 318, 108272 (2019).
Google Scholar
Honegger, R. The lichen symbiosis: what is so spectacular about it? Lichenologist 30, 193–212 (1998).
Google Scholar
Green, T. G. A., Pintado, A., Raggio, J. & Sancho, L. G. The lifestyle of lichens in soil crusts. Lichenologist 50, 397–410 (2018).
Google Scholar
Kuykendall, L. D., Hashem, F. M., Bauchan, G. R., Devine, T. E. & Dadson, R. B. Symbiotic competence of Sinorhizobium fredii on twenty alfalfa cultivars of diverse dormancy. Symbiosis 27, 1–16 (1999).
Vujanovic, V. & Vujanovic, J. Mycovitality and mycoheterotrophy: where lies dormancy in terrestrial orchid and plants with minute seeds? Symbiosis 44, 93–99 (2007).
Google Scholar
Dittmer, J. & Brucker, R. M. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. Microbiome 9, 85 (2021).
Google Scholar
Snyder, R. E. Multiple risk reduction mechanisms: can dormancy substitute for dispersal? Ecol. Lett. 9, 1106–1114 (2006).
Google Scholar
Vitalis, R., Rousset, F., Kobayashi, Y., Olivieri, I. & Gandon, S. The joint evolution of dispersal and dormancy in a metapopulation with local extinctions and kin competition. Evolution 67, 1676–1691 (2013).
Google Scholar
Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).
Google Scholar
den Hollander, F. & Pederzani, G. Multi-colony Wright-Fisher with a seed bank. Indag. Math. 28, 637–669 (2017).
Google Scholar
Coates, A. R. M. Dormancy and Low Growth States in Microbial Disease. (Cambridge University Press, 2003). Book describing how dormancy is involved in many human diseases.
Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe 13, 632–642 (2013).
Google Scholar
Zhu, D. L., Sorg, J. A. & Sun, X. M. Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell. Infect. Microbiol. 8, 29 (2018).
Google Scholar
Wood, T. K., Knabel, S. J. & Kwan, B. W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121 (2013).
Google Scholar
Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).
Google Scholar
Mukamolova, G. V., Turapov, O., Malkin, J., Woltmann, G. & Barer, M. R. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180 (2010).
Google Scholar
Shimizu, H. & Nakayama, K. Artificial intelligence in oncology. Cancer Sci. 111, 1452–1460 (2020).
Google Scholar
Aktipis, A. C., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013).
Google Scholar
Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).
Google Scholar
Miller, A. K., Brown, J. S., Basanta, D. & Huntly, N. What is the storage effect, why should it occur in cancers, and how can it inform cancer therapy? Cancer Control 27,1073274820941968 (2020).
Park, S. Y. & Nam, J. S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med. 52, 569–581 (2020).
Google Scholar
Sorrell, I., White, A., Pedersen, A. B., Hails, R. S. & Boots, M. The evolution of covert, silent infection as a parasite strategy. Proc. R. Soc. B Biol. Sci. 276, 2217–2226 (2009).
Google Scholar
Boots, M. et al. The population dynamical implications of covert infections in host–microparasite interactions. J. Anim. Ecol. 72, 1064–1072 (2003).
Google Scholar
Gilbert, N. M., O’Brien, V. P. & Lewis, A. L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog. 13, e1006238 (2017).
Google Scholar
Xu, R. Global dynamics of a delayed epidemic model with latency and relapse. Nonlinear Anal. Model Control 18, 250–263 (2013).
Google Scholar
Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). Hosts defend against parasites via dormancy with implications for herd immunity.
Google Scholar
Lamont, B. B., Pausas, J. G., He, T. H., Witkowski, E. T. F. & Hanley, M. E. Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit. Rev. Plant Sci. 39, 140–172 (2020).
Google Scholar
Alsos, I. G., Muller, E. & Eidesen, P. B. Germinating seeds or bulbils in 87 of 113 tested Arctic species indicate potential for ex situ seed bank storage. Polar Biol. 36, 819–830 (2013).
Google Scholar
Ooi, M. K. J., Auld, T. D. & Denham, A. J. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Glob. Change Biol. 15, 2375 – 2386 (2009).
Gioria, M. & Pysek, P. The legacy of plant invasions: changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).
Google Scholar
Kuo, V., Lehmkuhl, B. K. & Lennon, J. T. Resuscitation of the microbial seed bank alters plant‐soil interactions. Mol. Ecol. 30, 2905–2914 (2021).
Google Scholar
Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).
Google Scholar
Kearns, P. J. et al. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments. Nat. Commun. 7, 12881 (2016).
Google Scholar
Salazar, A., Lennon, J. T. & Dukes, J. S. Microbial dormancy improves predictability of soil respiration at the seasonal time scale. Biogeochemistry 144, 103–116 (2019).
Google Scholar
Zha, J. R. & Zhuang, Q. L. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).
Google Scholar
Blath, J., Hermann, F. & Slowik, N. A branching process model for dormancy and seed banks in randomly fluctuating environments. J. Math. Biol. 83, 17 (2021).
Google Scholar
Malik, T. & Smith, H. L. Does dormancy increase fitness of bacterial populations in time-varying environments? Bull. Math. Biol. 70, 1140–1162 (2008).
Google Scholar
Dombry, C., Mazza, C. & Bansaye, V. Phenotypic diversity and population growth in a fluctuating environment. Adv. Appl. Prob. 43, 375–398 (2011). Mathematical model for assessing optimality of transitioning in random environments.
Google Scholar
Wakeley, J. Coalescent Theory: An Introduction. (Greenwood Village: Roberts & Company Publishers, 2009). Concise introduction to the fundamentals of coalescent theory bridging mathematics and biology.
Tellier, A. et al. Estimating parameters of speciation models based on refined summaries of the joint site-frequency spectrum. PLoS One 6, e18155 (2011).
Google Scholar
Tellier, A. Persistent seed banking as eco-evolutionary determinant of plant nucleotide diversity: novel population genetics insights. New Phytol. 221, 725–730 (2019).
Google Scholar
Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248 (1982). Foundational paper that introduced the standard coalescent.
Google Scholar
Kaj, I., Krone, S. M. & Lascoux, M. Coalescent theory for seed bank models. J. Appl. Probab. 38, 285–300 (2001). First paper to incorporate seed banks into coalescent theory.
Google Scholar
Blath, J., Casanova, A. G., Kurt, N. & Wilke-Berenguer, M. A new coalescent for seed-bank models. Ann. Appl. Probab. 26, 857–891 (2016).
Google Scholar
Blath, J., Kurt, N., Gonzalez Casanova, A. & Wilke-Berenguer, M. The seed bank coalescent with simultaneous switching. Electron. J. Probab. 25, 1–21 (2020).
Lalonde, R. G. & Roitberg, B. D. Chaotic dynamics can select for long-term dormancy. Am. Nat. 168, 127–131 (2006).
Google Scholar
Blath, J. & Tobias, A. Invasion and fixation of microbial dormancy traits under competitive pressure. Stoch. Proc. Appl. 130, 7363–7395 (2020).
Google Scholar
Tan, Z. X., Koh, J. M., Koonin, E. V. & Cheong, K. H. Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7, 1901559 (2020).
Google Scholar
McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).
Google Scholar
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography. (Princeton University Press, 2001).
Ewens, W. J. Sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).
Google Scholar
Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).
Google Scholar
Rosindell, J., Wong, Y. & Etienne, R. S. A coalescence approach to spatial neutral ecology. Ecol. Inform. 3, 259–271 (2008).
Google Scholar
White, E. P., Thibault, K. M. & Xiao, X. Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology 93, 1772–1778 (2012).
Google Scholar
Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 5 (2017).
Google Scholar
Greven, A., den Hollander, F. & Oomen, M. Spatial populations with seed-bank: well-posedness, duality and equilibrium. Preprint at https://arxiv.org/abs/2004.14137 (2020).
Liggett, T. M. Interacting Particle Systems. 488 (Springer Science & Business Media, 1985). Overview of the mathematical theory of stochastic systems consisting of large numbers of interacting components.
Kipnis, C. & Landim, C. Scaling Limits of Interacting Particle Systems. Vol. 320 (Springer, 1999).
van der Hofstad, R. Random Graphs and Complex Networks. (Cambridge University Press, 2017).
Levin, D. Z., Walter, J. & Murnighan, K. J. Dormant ties: the value of reconnecting. Organ. Sci. 22, 923–939 (2011).
Google Scholar
Marin, A. & Hampton, K. Network instability in times of stability. Sociol. Forum 34, 313–336 (2019).
Google Scholar
Crawford, D. C. & Mennerick, S. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release. Neuroscientist 18, 216–223 (2012).
Google Scholar
Borsboom, D. A network theory of mental disorders. World Psychiatry 16, 5–13 (2017).
Google Scholar
Metz, J. A., Nisbet, R. M. & Geritz, S. A. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198–202 (1992).
Google Scholar
Bansaye, V. & Meleard, S. Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior. (Springer, 2015).
Champagnat, N., Ferrière, R. & Ben Arous, G. The canonical equation of adaptive dynamics: a mathematical view. Selection 2, 73–83 (2001).
Google Scholar
Champagnat, N. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116, 1127–1160 (2006).
Google Scholar
Champagnat, N. & Meleard, S. Polymorphic evolution sequence and evolutionary branching. Probab. Theory Relat. Field 151, 45–94 (2011).
Google Scholar
Kraut, A. & Bovier, A. From adaptive dynamics to adaptive walks. J. Math. Biol. 75, 1699–1747 (2019).
Google Scholar
Blath, J., Hammer, M. & Nie, F. The stochastic Fisher-KPP Equation with seed bank and on/off-branching-coalescing Brownian motion. Preprint at https://arxiv.org/abs/2005.01650 (2020).
Source: Ecology - nature.com