Bardgett, R. The Biology of Soil: A Community and Ecosystem Approach (Oxford University Press Inc, 2005).
Google Scholar
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Nat. Acad. Sci. 103, 626–631. https://doi.org/10.1073/pnas.0507535103 (2006).
Google Scholar
Fitter, A. H. et al. Biodiversity and ecosystem function in soil. Funct. Ecol. 19, 369–377 (2005).
Google Scholar
Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).
Google Scholar
Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
Google Scholar
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Google Scholar
Whitford, W. G. Pattern and Process in Desert Ecosystems 93–118 (University of New Mexico Press, 1986).
Fisher, F. M., Parker, L. W., Anderson, J. P. & Whitford, W. G. Nitrogen mineralization in a desert soil: Interacting effects of soil moisture and nitrogen fertilizer. Soil Sci. Soc. Am. J. 51, 1033–1041 (1987).
Google Scholar
Yeates, G. W. & Bongers, T. Nematode diversity in agroecosystems. Agric Ecosyst Environ. 74,113–135. https://doi.org/10.1016/S0167-8809(99)00033-X (1999).
Ruess, L. Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5, 179–181 (2003).
Google Scholar
Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).
Google Scholar
Bhusal, D. R., Tsiafouli, M. A. & Sgardelis, S. P. Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia 179, 187–199 (2015).
Google Scholar
Bloemers, G. F., Hodda, M., Lambshead, P. J. D., Lawton, J. H. & Wanless, F. R. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia 111, 575–582 (1997).
Google Scholar
Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).
Google Scholar
Tsiafouli, M. A., Bhusal, D. R. & Sgardelis, S. P. Nematode community indices for microhabitat type and large scale landscape properties. Ecol. Indic. 73, 472–479 (2017).
Google Scholar
Korner, C. Alpine plants: stressed or adapted? In Physiological Plant Ecology (Press, M.C. et al., eds), 297–311, (Blackwell, 1998).
Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).
Google Scholar
Loranger, G., Bandyopadhyaya, I., Razaka, B. & Ponge, J. F. Does soil acidity explain altitudinal sequences in collembolan communities?. Soil Biol. Biochem. 33, 381–393 (2001).
Google Scholar
Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).
Google Scholar
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).
Google Scholar
Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadica sebifera) in China. Plant Ecol. 220, 965–976 (2019).
Google Scholar
Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arct. Alp. Res. 30, 133–141 (1998).
Google Scholar
Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronema hamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).
Google Scholar
Tong, F. C., Xiao, Y. H. & Wang, Q. L. Soil nematode community structure on the northern slope of Changbai Mountain, Northeast China. J. For. Res. 21, 93–98 (2010).
Google Scholar
Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).
Google Scholar
Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano, state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).
Google Scholar
Illig, J., Norton, R. A., Scheu, S. & Maraun, M. Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp. Appl. Acarol. 52, 49–62 (2010).
Google Scholar
Devetter, M., Háněl, L., Řeháková, K. & Doležal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS One 12, e0187646 (2017).
Google Scholar
Bird, A. F. & Wallace, H. R. The influence of temperature on Meloidogyne hapla and M. javanica. Nematologica 11, 581–589 (1965).
Google Scholar
Wang, Z. & Wu, H. Study towards the eco-geographic community of mountain soil nematode in the middle of Hunan. J. Nat. Sci. 15, 72–78 (1992).
Landesman, W. J., Treonis, A. M. & Dighton, J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia 54, 87–91 (2011).
Google Scholar
Luo, Y. & Zhou, X. Soil Respiration and the Environment (Academic Press, 2006).
Yan, D. et al. Community structure of soil nematodes under different drought conditions. Geoderma 325, 110–116 (2018).
Google Scholar
Quist, C. W. et al. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol. Biochem. 136, 107542 (2019).
Google Scholar
Margesin, R., Minerbi, S. & Schinner, F. Litter decomposition at two forest sites in the Italian Alps: A field study. Arct. Antarct. Alp. Res. 48, 127–138 (2016).
Google Scholar
Kappes, H., Lay, R. & Topp, W. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems 10, 734–744 (2007).
Google Scholar
Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).
Google Scholar
Gerber, K. Nematodenfauna alpine Böden im Glocknergebiet (Hohe Tauern, Österreich). Veröffentlichungen des Österreichischen Mass-Hochgebirgsprogramms 4, 80–90 (1981).
Zhang, X. et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol. Biochem. 80, 118–126 (2015).
Google Scholar
Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape References [40] are given in list but not cited in text. Please cite in text or delete them from listrootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).
Google Scholar
Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13–29 (2001).
Google Scholar
Sánchez-Moreno, S., Nicola, N. L., Ferris, H. & Zalom, F. G. Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol. 41, 107–117 (2009).
Google Scholar
Dar, T. A., Uddin, M., Khan, M. M. A., Hakeem, K. R. & Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 115, 49–57 (2015).
Google Scholar
Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).
Google Scholar
Van, B. J. Methods and Techniques for Nematology 20 (Wageningen University, 2006).
Goodey, T. Soil and Freshwater Nematodes (Methuen and Cooperation Limited, 1963).
Jairajpuri, M. S. & Ahmad, W. Dorylaimida: Free-Living, Predaceous and Plant-Parasitic Nematodes (Brill, 1992).
Ahmad, W. Plant Parasitic Nematodes of India (Litho Offset Printers, 1996).
Andrássy, I. Free-living nematodes of Hungary (Nematoda errantia), I. In Pedozoologica Hungarica No. 3 (eds Csuzdi, C. & Mahunka, S.) (Hungarian Natural History Museum, 2005).
Ahmad, W. & Jairajpuri, M. S. Mononchida: The Predaceous Nematodes. Nematology Monographs and Prespectives (Brill, 2010).
Google Scholar
Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 10, 239–251 (1998).
Google Scholar
Hammer, O., Harper, D. & Ryan, P. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).
Google Scholar
Andrassy, I. The determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).
Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).
Google Scholar
Sperman’s correlation and linear regression was performed using GraphPad Prism version 8.0.2 for Windows, GraphPad Software, La Jolla California USA. www.graphpad.com. Accessed 20 Jan 2021.
Source: Ecology - nature.com