in

Altitudinal gradient affect abundance, diversity and metabolic footprint of soil nematodes in Banihal-Pass of Pir-Panjal mountain range

  • 1.

    Bardgett, R. The Biology of Soil: A Community and Ecosystem Approach (Oxford University Press Inc, 2005).

    Book 

    Google Scholar 

  • 2.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Nat. Acad. Sci. 103, 626–631. https://doi.org/10.1073/pnas.0507535103 (2006).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Fitter, A. H. et al. Biodiversity and ecosystem function in soil. Funct. Ecol. 19, 369–377 (2005).

    Article 

    Google Scholar 

  • 4.

    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).

    Article 

    Google Scholar 

  • 5.

    Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Whitford, W. G. Pattern and Process in Desert Ecosystems 93–118 (University of New Mexico Press, 1986).

    Google Scholar 

  • 8.

    Fisher, F. M., Parker, L. W., Anderson, J. P. & Whitford, W. G. Nitrogen mineralization in a desert soil: Interacting effects of soil moisture and nitrogen fertilizer. Soil Sci. Soc. Am. J. 51, 1033–1041 (1987).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Yeates, G. W. & Bongers, T. Nematode diversity in agroecosystems. Agric Ecosyst Environ. 74,113–135. https://doi.org/10.1016/S0167-8809(99)00033-X (1999).

  • 10.

    Ruess, L. Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5, 179–181 (2003).

    Article 

    Google Scholar 

  • 11.

    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).

    Article 

    Google Scholar 

  • 12.

    Bhusal, D. R., Tsiafouli, M. A. & Sgardelis, S. P. Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia 179, 187–199 (2015).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Bloemers, G. F., Hodda, M., Lambshead, P. J. D., Lawton, J. H. & Wanless, F. R. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia 111, 575–582 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46, 97–104 (2010).

    Article 

    Google Scholar 

  • 15.

    Tsiafouli, M. A., Bhusal, D. R. & Sgardelis, S. P. Nematode community indices for microhabitat type and large scale landscape properties. Ecol. Indic. 73, 472–479 (2017).

    Article 

    Google Scholar 

  • 16.

    Korner, C. Alpine plants: stressed or adapted? In Physiological Plant Ecology (Press, M.C. et al., eds), 297–311, (Blackwell, 1998).

  • 17.

    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).

    Article 

    Google Scholar 

  • 18.

    Loranger, G., Bandyopadhyaya, I., Razaka, B. & Ponge, J. F. Does soil acidity explain altitudinal sequences in collembolan communities?. Soil Biol. Biochem. 33, 381–393 (2001).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Dong, K. et al. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan. Sci. Rep. 7, 3028 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Front. Ecol. Evol. 4, 84 (2016).

    Article 

    Google Scholar 

  • 21.

    Liu, J., Yang, Q., Siemann, E., Huang, W. & Ding, J. Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadica sebifera) in China. Plant Ecol. 220, 965–976 (2019).

    Article 

    Google Scholar 

  • 22.

    Powers, L. E., Ho, M. C., Freckman, D. W. & Virginia, R. A. Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arct. Alp. Res. 30, 133–141 (1998).

    Article 

    Google Scholar 

  • 23.

    Qing, X., Bert, W., Steel, H., Quisado, J. & de Ley, I. T. Soil and litter nematode diversity of Mount Hamiguitan, the Philippines, with description of Bicirronema hamiguitanense n. sp (Rhabditida: Bicirronematidae). Nematology 17, 325–344 (2015).

    Article 

    Google Scholar 

  • 24.

    Tong, F. C., Xiao, Y. H. & Wang, Q. L. Soil nematode community structure on the northern slope of Changbai Mountain, Northeast China. J. For. Res. 21, 93–98 (2010).

    Article 

    Google Scholar 

  • 25.

    Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).

    Article 

    Google Scholar 

  • 26.

    Cutz-Pool, L. Q., Palacios-Vargas, J. G., Cano-Santana, Z. & Castaño-Meneses, G. Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl volcano, state of Mexico, Mexico. Entomol. News 121, 249–261 (2010).

    Article 

    Google Scholar 

  • 27.

    Illig, J., Norton, R. A., Scheu, S. & Maraun, M. Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp. Appl. Acarol. 52, 49–62 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Devetter, M., Háněl, L., Řeháková, K. & Doležal, J. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS One 12, e0187646 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Bird, A. F. & Wallace, H. R. The influence of temperature on Meloidogyne hapla and M. javanica. Nematologica 11, 581–589 (1965).

    Article 

    Google Scholar 

  • 30.

    Wang, Z. & Wu, H. Study towards the eco-geographic community of mountain soil nematode in the middle of Hunan. J. Nat. Sci. 15, 72–78 (1992).

    Google Scholar 

  • 31.

    Landesman, W. J., Treonis, A. M. & Dighton, J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia 54, 87–91 (2011).

    Article 

    Google Scholar 

  • 32.

    Luo, Y. & Zhou, X. Soil Respiration and the Environment (Academic Press, 2006).

    Google Scholar 

  • 33.

    Yan, D. et al. Community structure of soil nematodes under different drought conditions. Geoderma 325, 110–116 (2018).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Quist, C. W. et al. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol. Biochem. 136, 107542 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Margesin, R., Minerbi, S. & Schinner, F. Litter decomposition at two forest sites in the Italian Alps: A field study. Arct. Antarct. Alp. Res. 48, 127–138 (2016).

    Article 

    Google Scholar 

  • 36.

    Kappes, H., Lay, R. & Topp, W. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems 10, 734–744 (2007).

    Article 

    Google Scholar 

  • 37.

    Veen, G. F. et al. Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos 126, 1586–1599 (2017).

    Article 

    Google Scholar 

  • 38.

    Gerber, K. Nematodenfauna alpine Böden im Glocknergebiet (Hohe Tauern, Österreich). Veröffentlichungen des Österreichischen Mass-Hochgebirgsprogramms 4, 80–90 (1981).

    Google Scholar 

  • 39.

    Zhang, X. et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol. Biochem. 80, 118–126 (2015).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Ferris, H., Zheng, L. & Walker, M. A. Resistance of grape References [40] are given in list but not cited in text. Please cite in text or delete them from listrootstocks to plant-parasitic nematodes. J. Nematol. 44, 377–386 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Ferris, H., Bongers, T. & De Goede, R. G. M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13–29 (2001).

    Article 

    Google Scholar 

  • 42.

    Sánchez-Moreno, S., Nicola, N. L., Ferris, H. & Zalom, F. G. Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol. 41, 107–117 (2009).

    Article 

    Google Scholar 

  • 43.

    Dar, T. A., Uddin, M., Khan, M. M. A., Hakeem, K. R. & Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 115, 49–57 (2015).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Van, B. J. Methods and Techniques for Nematology 20 (Wageningen University, 2006).

    Google Scholar 

  • 46.

    Goodey, T. Soil and Freshwater Nematodes (Methuen and Cooperation Limited, 1963).

    Google Scholar 

  • 47.

    Jairajpuri, M. S. & Ahmad, W. Dorylaimida: Free-Living, Predaceous and Plant-Parasitic Nematodes (Brill, 1992).

    Google Scholar 

  • 48.

    Ahmad, W. Plant Parasitic Nematodes of India (Litho Offset Printers, 1996).

    Google Scholar 

  • 49.

    Andrássy, I. Free-living nematodes of Hungary (Nematoda errantia), I. In Pedozoologica Hungarica No. 3 (eds Csuzdi, C. & Mahunka, S.) (Hungarian Natural History Museum, 2005).

    Google Scholar 

  • 50.

    Ahmad, W. & Jairajpuri, M. S. Mononchida: The Predaceous Nematodes. Nematology Monographs and Prespectives (Brill, 2010).

    Book 

    Google Scholar 

  • 51.

    Bongers, T. & Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 10, 239–251 (1998).

    Article 

    Google Scholar 

  • 52.

    Hammer, O., Harper, D. & Ryan, P. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 53.

    Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Andrassy, I. The determination of volume and weight of nematodes. Acta Zool. Acad. Sci. Hung. 2, 1–15 (1956).

    Google Scholar 

  • 55.

    Sieriebriennikov, B., Ferris, H. & de Goede, R. G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).

    Article 

    Google Scholar 

  • 56.

    Sperman’s correlation and linear regression was performed using GraphPad Prism version 8.0.2 for Windows, GraphPad Software, La Jolla California USA. www.graphpad.com. Accessed 20 Jan 2021.


  • Source: Ecology - nature.com

    Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism

    Chemistry Undergraduate Teaching Lab hibernates fume hoods, drastically reducing energy costs