Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001).
Google Scholar
Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human Influences on Evolution, and the Ecological and Societal Consequences (The Royal Society, 2017).
Google Scholar
Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B 285, 20182047 (2018).
Google Scholar
Dynesius, M. & Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266, 753–762 (1994).
Google Scholar
Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy?. Trends Ecol. Evol. 32, 922–935 (2017).
Google Scholar
Calles, O. & Greenberg, L. Connectivity is a two-way street—the need for a holistic approach to fish passage problems in regulated rivers. River Res. Appl. 25, 1268–1286 (2009).
Google Scholar
Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784 (1997).
Google Scholar
Haraldstad, T. et al. Anthropogenic and natural size-related selection act in concert during brown trout (Salmo trutta) smolt river descent. Hydrobiologia, 1–14 (2020).
Limburg, K. E. & Waldman, J. R. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59, 955–965 (2009).
Google Scholar
Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).
Google Scholar
Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish 12, 1–59 (2003).
Google Scholar
Thorstad, E. B., Økland, F., Aarestrup, K. & Heggberget, T. G. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev. Fish Biol. Fish. 18, 345–371 (2008).
Google Scholar
Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. & Reeves, G. H. Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55, 281–287 (1998).
Google Scholar
Larinier, M. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609, 97–108 (2008).
Google Scholar
Coutant, C. C. & Whitney, R. R. Fish behavior in relation to passage through hydropower turbines: a review. Trans. Am. Fish. Soc. 129, 351–380 (2000).
Google Scholar
Montèn, E. Fish and Turbines: Fish Injuries During Passage Through Power Station Turbines (Nordsteds Tryckeri, 1985).
Pracheil, B. M., DeRolph, C. R., Schramm, M. P. & Bevelhimer, M. S. A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage. Rev. Fish Biol. Fisheries 26, 153–167 (2016).
Google Scholar
Calles, O., Rivinoja, P. & Greenberg, L. A Historical perspective on downstream passage at hydroelectric plants in swedish rivers. In: Ecohydraulics. Wiley (2013).
Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish Fish. 19, 340–362 (2017).
Google Scholar
Noonan, M. J., Grant, J. W. A. & Jackson, C. D. A quantitative assessment of fish passage efficiency. Fish Fish. 13, 450–464 (2012).
Google Scholar
Scruton, D. A., McKinley, R. S., Kouwen, N., Eddy, W. & Booth, R. K. Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Res. Appl. 19, 605–617 (2003).
Google Scholar
Mallen-Cooper, M. & Brand, D. A. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage?. Fish. Manage. Ecol. 14, 319–332 (2007).
Google Scholar
Bunt, C., Castro-Santos, T. & Haro, A. Performance of fish passage structures at upstream barriers to migration. River Res. Appl. 28, 457–478 (2012).
Google Scholar
Haugen, T. O., Aass, P., Stenseth, N. C. & Vøllestad, L. A. Changes in selection and evolutionary responses in migratory brown trout following the construction of a fish ladder. Evol. Appl. 1, 319–335 (2008).
Google Scholar
Mallen-Cooper, M. & Stuart, I. G. Optimising Denil fishways for passage of small and large fishes. Fish. Manage. Ecol. 14, 61–71 (2007).
Google Scholar
Maynard, G. A., Kinnison, M. & Zydlewski, J. D. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population. River Res. Appl. 33, 1004–1015 (2017).
Google Scholar
Lothian, A. J. et al. Are we designing fishways for diversity? Potential selection on alternative phenotypes resulting from differential passage in brown trout. J Environ Manag 262, 110317 (2020).
Google Scholar
Haraldstad, T., Haugen, T. O., Kroglund, F., Olsen, E. M. & Höglund, E. Migratory passage structures at hydropower plants as potential physiological and behavioural selective agents. R. Soc. Open Sci. 6, 190 (2019).
Google Scholar
Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).
Google Scholar
Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. R. Soc. B: Biol. Sci. 282, 20142201 (2015).
Google Scholar
Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B: Biol. Sci. 365, 4051–4063 (2010).
Google Scholar
Haraldstad, T., Höglund, E., Kroglund, F., Haugen, T. O. & Forseth, T. Common mechanisms for guidance efficiency of descending Atlantic salmon smolts in small and large hydroelectric power plants. River Res. Appl. 34, 1179–1185 (2018).
Google Scholar
Larsen, M. H., Thorn, A. N., Skov, C. & Aarestrup, K. Effects of passive integrated transponder tags on survival and growth of juvenile Atlantic salmon Salmo salar. Anim. Biotelem. 1, 19 (2013).
Google Scholar
Vollset, K. W. et al. Systematic review and meta-analysis of PIT tagging effects on mortality and growth of juvenile salmonids. Rev. Fish Biol. Fish, 1–16 (2020).
Adriaenssens, B. & Johnsson, J. I. Natural selection, plasticity and the emergence of a behavioural syndrome in the wild. Ecol. Lett. 16, 47–55 (2013).
Google Scholar
Dingemanse, N. J. et al. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 76, 1128–1138 (2007).
Google Scholar
Larsen, M. H. et al. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration. PLoS ONE 10, e0119127 (2015).
Google Scholar
Castanheira, M. F., Herrera, M., Costas, B., Conceição, L. E. & Martins, C. I. Can we predict personality in fish? Searching for consistency over time and across contexts. PLoS ONE 8, e62037 (2013).
Google Scholar
Huntingford, F. et al. Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. J. Fish Biol. 76, 1576–1591 (2010).
Google Scholar
Brown, C., Jones, F. & Braithwaite, V. Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J. Fish Biol. 71, 1590–1601 (2007).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing.). R Foundation for Statistical Computing (2016).
Akaike, H. A. new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
Google Scholar
Anderson, D. R. Model-Based Interference in the Life Sciences: A Primer on Evidence (Springer, 2008).
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).
Brunham, A. & Anderson D, R. Model selection and multimodel inference: A practical information-theoretic approach. 2nd edn (Springer-Verlag, New York 2002).
Fjeldstad, H. P., Alfredsen, K. & Boissy, T. Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river. Fish. Manage. Ecol. 21, 22–31 (2014).
Google Scholar
Calles, O. et al. Anordning för upp- och nedströmspassage av fisk vid vattenanläggningar (2013).
Larinier, M., Travade, F. The development and evaluation of downstream bypasses for juvenile salmonids at small hydroelectric plants in France. Innov. Fish Passage Technol. 25–42 (1999).
Turnpenny, A. W. H., O`Keeffe, N. Screening for intake and Outfalls: a best practice guide (2005).
Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).
Google Scholar
Taylor, M. K. & Cooke, S. J. Repeatability of movement behaviour in a wild salmonid revealed by telemetry. J. Fish Biol. 84, 1240–1246 (2014).
Google Scholar
Odling-Smee, L. & Braithwaite, V. A. The role of learning in fish orientation. Fish Fish. 4, 235–246 (2003).
Google Scholar
Lucon-Xiccato, T., Montalbano, G. & Bertolucci, C. Personality traits covary with individual differences in inhibitory abilities in 2 species of fish. Curr. Zool. 66, 187–195 (2019).
Google Scholar
Endler, J. A. Natural Selection in the Wild (Princeton University Press, 1986).
Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783 (2009).
Google Scholar
Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).
Google Scholar
Wuerz, Y. & Krüger, O. Personality over ontogeny in zebra finches: long-term repeatable traits but unstable behavioural syndromes. Front. Zool. 12, S9 (2015).
Google Scholar
Wolf, M. & Weissing, F. J. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).
Google Scholar
Cordero-Rivera, A. Behavioral diversity (ethodiversity): a neglected level in the study of biodiversity. Front. Ecol. Evol. 5, 7 (2017).
Google Scholar
Biro, P. A. & Post, J. R. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl. Acad. Sci. 105, 2919–2922 (2008).
Google Scholar
Uusi-Heikkilä, S., Wolter, C., Klefoth, T. & Arlinghaus, R. A behavioral perspective on fishing-induced evolution. Trends Ecol. Evol. 23, 419–421 (2008).
Google Scholar
Cooke, S. J., Suski, C. D., Ostrand, K. G., Wahl, D. H. & Philipp, D. P. Physiological and behavioral consequences of long-term artificial hselection for vulnerability to recreational angling in a teleost fish. Physiol. Biochem. Zool. 80, 480–490 (2007).
Google Scholar
Source: Ecology - nature.com