in

Predicting species distributions and community composition using satellite remote sensing predictors

  • 1.

    Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Pinto-Ledezma, J. N. & Rivero Mamani, M. L. Temporal patterns of deforestation and fragmentation in lowland Bolivia: Implications for climate change. Clim. Change 127, 43–54 (2014).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Allen, J. M., Folk, R. A., Soltis, P. S., Soltis, D. E. & Guralnick, R. P. Biodiversity synthesis across the green branches of the tree of life. Nat. Plants 5, 11–13 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Accessed 15 Feb 2021. https://zenodo.org/record/3553579. https://doi.org/10.5281/ZENODO.3553579 (2019).

  • 6.

    Cavender-Bares, J., Balvanera, P., King, E. & Polasky, S. Ecosystem service trade-offs across global contexts and scales. Ecol. Soc. 20, art22 (2015).

    Article 

    Google Scholar 

  • 7.

    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Mateo, R. G., Mokany, K. & Guisan, A. Biodiversity models: What if unsaturation is the rule?. Trends Ecol. Evol. 32, 556–566 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 (2006).

    Article 

    Google Scholar 

  • 14.

    Guisan, A. & Rahbek, C. SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages: Predicting spatio-temporal patterns of species assemblages. J. Biogeogr. 38, 1433–1444 (2011).

    Article 

    Google Scholar 

  • 15.

    Cavender-Bares, J., Schweiger, A. K., Pinto-Ledezma, J. N. & Meireles, J. E. Applying remote sensing to biodiversity science. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 13–42 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_2.

    Chapter 

    Google Scholar 

  • 16.

    Fawcett, D. et al. Advancing retrievals of surface reflectance and vegetation indices over forest ecosystems by combining imaging spectroscopy, digital object models, and 3D canopy modelling. Remote Sens. Environ. 204, 583–595 (2018).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    D’Amen, M., Pradervand, J.-N. & Guisan, A. Predicting richness and composition in mountain insect communities at high resolution: A new test of the SESAM framework: Community-level models of insects. Glob. Ecol. Biogeogr. 24, 1443–1453 (2015).

    Article 

    Google Scholar 

  • 20.

    Pottier, J. et al. The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients: Climate and species assembly predictions. Glob. Ecol. Biogeogr. 22, 52–63 (2013).

    Article 

    Google Scholar 

  • 21.

    Zurell, D. et al. Testing species assemblage predictions from stacked and joint species distribution models. J. Biogeogr. 47, 101–113 (2020).

    Article 

    Google Scholar 

  • 22.

    D’Amen, M. et al. Improving spatial predictions of taxonomic, functional and phylogenetic diversity. J. Ecol. 106, 76–86 (2018).

    Article 

    Google Scholar 

  • 23.

    Dobrowski, S. Z. et al. Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecol. Monogr. 81, 241–257 (2011).

    Article 

    Google Scholar 

  • 24.

    Soria-Auza, R. W. et al. Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: A case study from Bolivia. Ecol. Model. 221, 1221–1229 (2010).

    Article 

    Google Scholar 

  • 25.

    Rocchini, D. et al. Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sens. Ecol. Conserv. 2, 25–36 (2016).

    Article 

    Google Scholar 

  • 26.

    Schulte to Bühne, H. & Pettorelli, N. Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science. Methods Ecol. Evol. 9, 849–865 (2018).

    Article 

    Google Scholar 

  • 27.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Hobi, M. L. et al. A comparison of Dynamic Habitat Indices derived from different MODIS products as predictors of avian species richness. Remote Sens. Environ. 195, 142–152 (2017).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204–214 (2019).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Pinto-Ledezma, J. N. & Cavender-Bares, J. Using remote sensing for modeling and monitoring species distributions. In Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 199–223 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3_9.

  • 31.

    Fernández, N., Ferrier, S., Navarro, L. M. & Pereira, H. M. Essential biodiversity variables: Integrating in-situ observations and remote sensing through modeling. In Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 485–501 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3_18.

  • 32.

    Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01451-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Saatchi, S., Buermann, W., ter Steege, H., Mori, S. & Smith, T. B. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens. Environ. 112, 2000–2017 (2008).

    ADS 
    Article 

    Google Scholar 

  • 34.

    He, K. S. et al. Will remote sensing shape the next generation of species distribution models?. Remote Sens. Ecol. Conserv. 1, 4–18 (2015).

    Article 

    Google Scholar 

  • 35.

    Cord, A. F., Meentemeyer, R. K., Leitão, P. J. & Václavík, T. Modelling species distributions with remote sensing data: Bridging disciplinary perspectives. J. Biogeogr. 40, 2226–2227 (2013).

    Article 

    Google Scholar 

  • 36.

    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Scherrer, D., D’Amen, M., Fernandes, R. F., Mateo, R. G. & Guisan, A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods Ecol. Evol. 9, 2155–2166 (2018).

    Article 

    Google Scholar 

  • 38.

    Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytol. 221, 669–692 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Cavender-Bares, J. et al. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. Am. J. Bot. 105, 565–586 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. 106, 19651–19658 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Townsend Peterson, A. et al. Ecological Niches and Geographic Distributions. (Princeton University Press, 2011).

    Book 

    Google Scholar 

  • 43.

    Cavender-Bares, J., Fontes, G. C. & Pinto-Ledezma, J. Open questions in understanding the adaptive significance of plant functional trait variation within a single lineage. New Phytol. https://doi.org/10.1111/nph.16652 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Cavender-Bares, J., Kitajima, K. & Bazzaz, F. A. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol. Monogr. 74, 635–662 (2004).

    Article 

    Google Scholar 

  • 45.

    Menges, E. S. & Hawkes, C. V. Interactive effects of fire and microhabitat on plants of Florida scrub. Ecol. Appl. 8, 935–946 (1998).

    Article 

    Google Scholar 

  • 46.

    Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models: Stacking species distribution models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).

    Article 

    Google Scholar 

  • 47.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Pinto-Ledezma, J. N., Jahn, A. E., Cueto, V. R., Diniz-Filho, J. A. F. & Villalobos, F. Drivers of phylogenetic assemblage structure of the Furnariides, a widespread clade of lowland neotropical birds. Am. Nat. 193, E41–E56 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Gamon, J. A. et al. Consideration of scale in remote sensing of biodiversity. In Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 425–447 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3_16.

  • 50.

    Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5, 397–406 (2014).

    Article 

    Google Scholar 

  • 51.

    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Ovaskainen, O. Joint Species Distribution Modelling: with Applications in R (Cambridge University Press, 2020).

    Book 

    Google Scholar 

  • 53.

    Poggiato, G. et al. On the interpretations of joint modeling in community ecology. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.01.002 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 54.

    Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. Defining and evaluating predictions of joint species distribution models. Methods Ecol. Evol. 12, 394–404 (2021).

    Article 

    Google Scholar 

  • 55.

    Bystrova, D. et al. Clustering species with residual covariance matrix in joint species distribution models. Front. Ecol. Evol. 9, 601384 (2021).

    Article 

    Google Scholar 

  • 56.

    Mateo, R. G. et al. Hierarchical species distribution models in support of vegetation conservation at the landscape scale. J. Veg. Sci. 30, 386–396 (2019).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains?. Ecol. Appl. 26, 530–544 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 58.

    Cavender-Bares, J. et al. Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. Am. J. Bot. 104, 966–969 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Schweiger, A. K. et al. Spectral Niches Reveal Taxonomic Identity and Complementarity in Plant Communities. (2020) https://doi.org/10.1101/2020.04.24.060483.

  • 60.

    Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 228, 485–493 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Alonso, K. et al. Data products, quality and validation of the DLR earth sensing imaging spectrometer (DESIS). Sensors 19, 4471 (2019).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).

    Article 

    Google Scholar 

  • 65.

    Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Cavender-Bares, J. et al. BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).

    Article 

    Google Scholar 

  • 67.

    Hipp, A. L. et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 217, 439–452 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Cavender-Bares, J. et al. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): A genomic and population genetics approach. Mol. Ecol. 24, 3668–3687 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article 

    Google Scholar 

  • 70.

    Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).

    Article 

    Google Scholar 

  • 71.

    Barnett, D. T. et al. The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere 10, e02603 (2019).

    Google Scholar 

  • 72.

    Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics: Remotely sensed climate data for tropical species distribution models. Glob. Ecol. Biogeogr. 25, 443–454 (2016).

    Article 

    Google Scholar 

  • 73.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.3. https://CRAN.R-project.org/package=dismo (2020).

  • 74.

    Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    ADS 
    Article 

    Google Scholar 

  • 75.

    Gower, S. T., Kucharik, C. J. & Norman, J. M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 29–51 (1999).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Reich, P. B. Key canopy traits drive forest productivity. Proc. R. Soc. B Biol. Sci. 279, 2128–2134 (2012).

    Article 

    Google Scholar 

  • 77.

    Xiao, Z. et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 52, 209–223 (2014).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 79.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Dubuis, A. et al. Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking modelling approaches: Predicting plant species richness. Divers. Distrib. 17, 1122–1131 (2011).

    Article 

    Google Scholar 

  • 81.

    Schoener, T. W. Anolis lizards of Bimini: Resource partition in a complex fauna. Ecology 49, 704–726 (1968).

    Article 

    Google Scholar 

  • 82.

    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).

    Article 

    Google Scholar 

  • 83.

    Cooper, J. C. & Soberón, J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 27, 156–165 (2018).

    Article 

    Google Scholar 

  • 84.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? How to use pseudo-absences in niche modelling?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • 85.

    Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Chipman, H. A., George, E. I. & McCulloch, R. E. BART: Bayesian additive regression trees. Ann. Appl. Stat. 4, 266–298 (2010).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 87.

    Yen, J. D. L., Thomson, J. R., Vesk, P. A. & Mac Nally, R. To what are woodland birds responding? Inference on relative importance of in-site habitat variables using several ensemble habitat modelling techniques. Ecography 34, 946–954 (2011).

    Article 

    Google Scholar 

  • 88.

    Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).

    Article 

    Google Scholar 

  • 89.

    Dorie, V. dbarts: Discrete Bayesian Additive Regression Trees Sampler. (2020).

  • 90.

    Hastie, T. & Tibshirani, R. Bayesian backfitting. Stat. Sci. 15(3), 196–223 (2000).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 91.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • 92.

    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article 

    Google Scholar 

  • 93.

    Hipp, A. L. et al. Genomic landscape of the global oak phylogeny. New Phytol. 226, 1198–1212 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar 

  • 95.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 96.

    Kruschke, J. Doing Bayesian Data Analysis, 2nd Ed. (2014).

  • 97.

    Mills, J. A. & Parent, O. Bayesian MCMC estimation. In Handbook of Regional Science (eds Fischer, M. M. & Nijkamp, P.) 1571–1595 (Springer, Berlin, 2014). https://doi.org/10.1007/978-3-642-23430-9_89.

    Chapter 

    Google Scholar 

  • 98.

    Carpenter, B. et al. Stan : A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article 

    Google Scholar 

  • 99.

    Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. (2020).

  • 100.

    Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • 101.

    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Elsa Olivetti wins 2021 MIT Bose Award for Excellence in Teaching

    Using aluminum and water to make clean hydrogen fuel — when and where it’s needed