Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 21, 331–337 (2012).
Google Scholar
Jankord, R. & Herman, J. P. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 1148, 64–73 (2008).
Google Scholar
Romero, L. M. Physiological stress in ecology: Lessons from biomedical research. Trends Ecol. Evol. 19, 249–255 (2004).
Google Scholar
Haase, C. G., Long, A. K. & Gillooly, J. F. Energetics of stress: Linking plasma cortisol levels to metabolic rate in mammals. Biol. Lett. 12, 20150867 (2016).
Google Scholar
Selye, H. A syndrome produced by diverse nocuous agents. Nature 1936, 32 (1936).
Google Scholar
Fink, G. Stress Science: Neuroendocrinology (Academic Press, Elsevier Science, 2010).
Hing, S., Narayan, E. J., Thompson, R. C. A. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 43, 51 (2016).
Google Scholar
Tsigos, C. & Chrousos, G. P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871 (2002).
Google Scholar
Tryphonopoulos, P. D., Letourneau, N. & Azar, R. Approaches to salivary cortisol collection and analysis in infants. Biol. Res. Nurs. 16, 398–408 (2014).
Google Scholar
Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243 (2019).
Google Scholar
Russell, E., Koren, G., Rieder, M. & Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 37, 589–601 (2012).
Google Scholar
McEwen, B. S. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583, 174–185 (2008).
Google Scholar
O’Connor, E. A. et al. The impact of chronic environmental stressors on growing pigs, Sus scrofa (Part 1): Stress physiology, production and play behaviour. Animal 4, 1899–1909 (2010).
Google Scholar
Kadarmideen, H. N. & Janss, L. L. G. Population and systems genetics analyses of cortisol in pigs divergently selected for stress. Physiol. Genomics 29, 57–65 (2007).
Google Scholar
Romano, M. C. et al. Stress in wildlife species: Noninvasive monitoring of glucocorticoids. NeuroImmunoModulation 17, 209–212 (2010).
Google Scholar
Sales, L. P. et al. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 86, 1214–1223 (2017).
Google Scholar
Briedermann, L. Schwarzwild (Franckh-Kosmos Verlags-GmnH & Co. KG, 2009).
Keuling, O. et al. Eurasian wild boar Sus scrofa (Linnaeus, 1758). In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 202–233 (Cambridge University Press, 2018).
Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz. Aktuelle Jagdzeiten in Niedersachsen (konsolidierte Fassung) Stand: 25. Januar 2021 inkl. Verordnung zur Durchführung des Nieders. Jagdgesetzes (DVO-NJagdG) vom 23. Mai 2008 (Nds. GVBl. S. 194), zuletzt geändert durch Verordnung vom 18. Januar 2021 (Nds. GVBl. S. 24). (2021). https://www.ml.niedersachsen.de/download/163729/Aktuelle_Jagdzeiten_in_Niedersachsen_Stand_25.01.2021_nicht_vollstaendig_barrierefrei_.pdf. Accessed 01 June 2021.
Casas-Díaz, E. et al. Hematologic and biochemical reference intervals for Wild Boar (Sus scrofa) captured by cage trap. Vet. Clin. Pathol. 44, 215–222 (2015).
Google Scholar
Gentsch, R. P., Kjellander, P. & Röken, B. O. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildl. Res. 64, 11 (2018).
Google Scholar
Adcock, S. J. J., Martin, G. M. & Walsh, C. J. The stress response and exploratory behaviour in Yucatan minipigs (Sus scrofa): Relations to sex and social rank. Physiol. Behav. 152, 194–202 (2015).
Google Scholar
Bratton, S. P. The effect of the European wild boar (Sus scrofa) on gray beech forest in the great smokey mountains. Ecology 56, 1356–1366 (1975).
Google Scholar
Singer, F. J., Swank, W. T. & Clebsh, E. E. C. The effects of wild pig rooting in a deciduous forest. J. Wildl. Manage. 48, 464–473 (1984).
Google Scholar
Wlazelko, M. & Labudzki, L. Über Nahrungskomponenten und trophische Stellung des Schwarzwildes im Forschungsgebiet Zielonka. Z. Jagdwiss. 38, 81–87 (1992).
Killian, G., Miller, L., Rhyan, J. & Doten, H. Immunocontraception of Florida feral swine with a single-dose GnRH vaccine. Am. J. Reprod. Immunol. 55, 378–384 (2006).
Google Scholar
Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241–256 (2007).
Google Scholar
Gräber, R., Strauß, E. & Johanshon, S. Wild und Jagd—Landesjagdbericht 2017/2018 (Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Hannover, 2018).
Wölfel, H. Bewegungsjagden (Leopold Stocker Verlag, 2003).
Eisenbarth, E. & Ophoven, E. Bewegungsjagd auf Schalenwild (Franckh-Kosmos Verlags-GmbH & Co., 2002).
Böhm, E. Drückjagd auf Sauen (Neumann-Neudamm, 2004).
Bradshaw, E. L. & Bateson, P. Welfare implications of culling red deer (Cervus elaphus). Anim. Welf. 9, 3–24 (2000).
Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).
Google Scholar
Hellhammer, D. H., Wüst, S. & Kudielka, B. M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34, 163–171 (2009).
Google Scholar
Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. M. & Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 1040, 162–171 (2005).
Google Scholar
Kanitz, E., Otten, W., Tuchscherer, M. & Manteuffel, G. Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets (Sus scrofa) at different ages. J. Vet. Med. Ser. A 50, 132–139 (2003).
Google Scholar
Campbell, E. A. et al. Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J. Clin. Endocrinol. Metab. 64, 1054–1059 (1987).
Google Scholar
Seth, S., Lewis, A. J. & Galbally, M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: A systematic literature review. BMC Pregn. Childbirth 16, 124 (2016).
Google Scholar
Gethöffer, F. Reproduktionsparameter und Saisonalität der Fortpflanzung des Wildschweins (Sus scrofa) in drei Untersuchungsgebieten Deutschlands (University of Veterinary Medicine Hannover, 2005).
Frauendorf, M., Gethöffer, F., Siebert, U. & Keuling, O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882 (2016).
Google Scholar
Gethöffer, F., Sodeikat, G. & Pohlmeyer, K. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur. J. Wildl. Res. 53, 287–297 (2007).
Google Scholar
DWD. Deutscher Wetterdienst—Wetter und Klima—Klimadaten (2019). https://www.dwd.de. Accessed 01 Oct 2019.
Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L.. Eur. J. Wildl. Res. 54, 403–412 (2008).
Google Scholar
Malmsten, A., Jansson, G., Lundeheim, N. & Dalin, A.-M. The reproductive pattern and potential of free ranging female wild boars (Sus scrofa) in Sweden. Acta Vet. Scand. 59, 52 (2017).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing Version R3.5.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2018).
Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
Google Scholar
Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R Package Version 0.8.25. https://github.com/droglenc/FSA (2019).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.2.3. http://www.sthda.com/english/rpkgs/ggpubr (2019).
Palme, R. Measuring fecal steroids: Guidelines for practical application. Ann. N. Y. Acad. Sci. 1046, 75–80 (2005).
Google Scholar
Cockrem, J. F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 181, 45–58 (2013).
Google Scholar
Mormède, P. et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 92, 317–339 (2007).
Google Scholar
Goymann, W. Noninvasive monitoring of hormones in bird droppings: Physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann. N. Y. Acad. Sci. 1046, 35–53 (2005).
Google Scholar
Guilliams, T. G. & Edwards, L. Chronic stress and the HPA axis: Clinical assessment and therapeutic considerations. Stand. 9, 1–12 (2010).
Merta, D., Mocala, P., Pomykacz, M. & Frackowiak, W. Autumn-winter diet and fat reserves of wild boars (Sus scrofa) inhabiting forest and forest-farmland environment in south-western Poland. Folia Zool. 63, 95–102 (2014).
Google Scholar
Poteaux, C. et al. Socio-genetic structure and mating system of a wild boar population. J. Zool. 278, 116–125 (2009).
Google Scholar
Kaminski, G., Brandt, S., Baubet, E. & Baudoin, C. Life-history patterns in female wild boars (Sus scrofa): Mother–daughter postweaning associations. Can. J. Zool. 83, 474–480 (2005).
Google Scholar
Krause, J. & Ruxton, G. D. Living in Groups. Oxford Series in Ecology and Evolution (Oxford University Press, 2002).
Kudielka, B. M. & Kirschbaum, C. Sex differences in HPA axis responses to stress: A review. Biol. Psychol. 69, 113–132 (2005).
Google Scholar
Balhara, Y. S., Verma, R. & Gupta, C. Gender differences in stress response: Role of developmental and biological determinants. Ind. Psychiatry J. 20, 4 (2012).
Google Scholar
Sutherland, M. A., Rodriguez-Zas, S. L., Ellis, M. & Salak-Johnson, J. L. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J. Anim. Sci. 83, 2087–2095 (2005).
Google Scholar
Foury, A. et al. Stress hormones, carcass composition and meat quality in Large White × Duroc pigs. Meat Sci. 69, 703–707 (2005).
Google Scholar
Ruis, M. A. W. et al. The circadian rhythm of salivary cortisol in growing pigs: Effects of age, gender, and stress. Physiol. Behav. 62, 623–630 (1997).
Google Scholar
Source: Ecology - nature.com