in

High taxonomic resolution surveys and trait-based analyses reveal multiple benthic regimes in North Sulawesi (Indonesia)

  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral reef habitat response to climate change scenarios. PLoS One 8, e82404 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Salo, T., Mattila, J. & Eklöf, J. Long-term warming affects ecosystem functioning through species turnover and intraspecific trait variation. Oikos 129, 283–295 (2020).

    Article 

    Google Scholar 

  • 5.

    Alvarez-Filip, L., Dulvy, N. K., Côte, I. M., Watkinson, A. R. & Gill, J. A. Coral identity underpins architectural complexity on Caribbean reefs. Ecol. Appl. 21, 2223–2231 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).

    Article 

    Google Scholar 

  • 7.

    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Richardson, L. E., Graham, N. A. J. & Hoey, A. S. Coral species composition drives key ecosystem function on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192214 (2020).

    Article 

    Google Scholar 

  • 9.

    Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).

    ADS 
    Article 

    Google Scholar 

  • 10.

    McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).

    Article 

    Google Scholar 

  • 11.

    Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 9680 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Bozec, Y.-M. & Mumby, P. J. Synergistic impacts of global warming on the resilience of coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130267 (2015).

    Article 

    Google Scholar 

  • 13.

    Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Change Biol. 24, 773–785 (2018).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Lasker, H., Bramanti, L., Tsounis, G. & Edmunds, P. The rise of octocoral forests on Caribbean reefs. Adv. Mar. Biol. 86, 361–410 (2020).

    Article 

    Google Scholar 

  • 15.

    Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: A tipping point that may limit reef recovery. Science 345, 892–897 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Ampou, E. E., Ouillon, S., Iovan, C. & Andréfouët, S. Change detection of Bunaken Island coral reefs using 15 years of very high resolution satellite images: A kaleidoscope of habitat trajectories. Mar. Pollut. Bull. 131, 83–95 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Di Martino, E., Jackson, J. B. C., Taylor, P. D. & Johnson, K. G. Differences in extinction rates drove modern biogeographic patterns of tropical marine biodiversity. Sci. Adv. 4, eaaq1508 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Brandl, S. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article 

    Google Scholar 

  • 21.

    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).

    Article 

    Google Scholar 

  • 22.

    Reverter, M., Jackson, M., Daraghmeh, N., von Mach, C. & Milton, N. 11-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): The collapse of urchins and rise of macroalgae and cyanobacterial mats. Coral Reefs 39, 1605–1618 (2020).

    Article 

    Google Scholar 

  • 23.

    Schläppy, M.-L. et al. Making waves: Marine citizen science for impact. Front. Mar. Sci. 4, 146 (2017).

    Article 

    Google Scholar 

  • 24.

    de Bakker, D. M. et al. 40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: The rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).

    ADS 
    Article 

    Google Scholar 

  • 25.

    González-Barrios, F. J., Cabral-Tena, R. A. & Alvarez-Filip, L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Glob. Change Biol. 27, 640–651 (2021).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Bellwood, D., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term “function” in ecology: A coral reef perspective. Funct. Ecol. 33, 948–961 (2021).

    Article 

    Google Scholar 

  • 29.

    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. U.S.A. 111, 13757–13762 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C.-Y. & Chen, C. A. A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci. Rep. 7, 9849 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in coral reef communities. Sci. Rep. 9, 3721 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Hoeksema, B. Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle, Vol. 29 117-178 (2007)

  • 35.

    Ponti, M. et al. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats. PeerJ 4, e2614 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Roff, G. et al. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 34(3), 715–725. https://doi.org/10.1007/s00338-015-1305-z (2015).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Doropoulos, C., Roff, G., Visser, M.-S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98(2), 304–314. https://doi.org/10.1002/ecy.166 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980. https://doi.org/10.1126/science.abd9464 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Otaño-Cruz, A. et al. Caribbean near-shore coral reef benthic community response to changes on sedimentation dynamics and environmental conditions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00551 (2019).

    Article 

    Google Scholar 

  • 40.

    Goatley, C. H. R. & Bellwood, D. R. Ecological consequences of sediment on high-energy coral reefs. PLoS One 8(10), e77737. https://doi.org/10.1371/journal.pone.0077737 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Powell, A. et al. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: Implications for future changes in environmental quality. PLoS One 9(1), e85253. https://doi.org/10.1371/journal.pone.0085253 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lester, S. E. et al. Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. Glob. Change Biol. 26, 4785–4799 (2020).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Pombo-Ayora, L., Coker, D. J., Carvalho, S., Short, G. & Berumen, M. L. Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to coral reef benthic conditions. Mar. Environ. Res. 162, 105102 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Lam, V. Y. Y., Doropoulos, C. & Mumby, P. J. The influence of resilience-based management on coral reef monitoring: A systematic review. PLoS One 12, e0172064 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Donovan, M. K. et al. Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. Sci. Rep. 8, 16943 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Smith, J. E. et al. Re-evaluating the health of coral reef communities: Baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. Sci. B. 283, 20151985 (2016).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Althaus, F. et al. A Standardised vocabulary for identifying benthic biota and substrata from underwater magery: The CATAMI classification scheme. PLoS One 10, e0141039 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Wee, H. B. et al. Zoantharian abundance in coral reef benthic communities at Terengganu Islands, Malaysia. Reg. Stud. Mar. Sci. 12, 58–63 (2017).

    Article 

    Google Scholar 

  • 50.

    McFadden, C. S. et al. Species boundaries in the absence of morphological, ecological or geographical differentiation in the Red Sea octocoral genus Ovabunda (Alcyonacea: Xeniidae). Mol. Phylogenet. Evol. 112, 174–184 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Ruiz, C. et al. Descriptions of new sponge species and genus, including aspiculate Plakinidae, overturn the Homoscleromorpha classification. Zool. J. Linn. Soc. 179, 707–724 (2017).

    Google Scholar 

  • 52.

    Koido, T., Imahara, Y. & Fukami, H. High species diversity of the soft coral family Xeniidae (Octocorallia, Alcyonacea) in the temperate region of Japan revealed by morphological and molecular analyses. Zookeys 862, 1–22 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Schönberg, C.H.L. & Fromont, J. Sponge functional growth forms as a means for classifying sponges without taxonomy. http://ningaloo-atlas.org.au/AIMS. [02/12/2020]. http://ningaloo-atlas.org.au/content/sponge-functional-growth-forms-means-classifying-spo (2014).

  • 54.

    Atrigenio, M., Aliño, P. & Conaco, C. Influence of the blue coral Heliopora coerulea on scleractinian coral larval recruitment. J. Mar. Biol. 2017, 6015143 (2017).

    Article 

    Google Scholar 

  • 55.

    Guzman, C., Atrigenio, M., Shinzato, C., Aliño, P. & Conaco, C. Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. PeerJ 7, e7785 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 4, e2625 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Biggerstaff, A., Jompa, J. & Bell, J. J. Increasing benthic dominance of the phototrophic sponge Lamellodysidea herbacea on a sedimented reef within the Coral Triangle. Mar. Biol. 164, 220 (2017).

    Article 

    Google Scholar 

  • 58.

    Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia. Mar. Environ. Res. 144, 125–129 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Marlow, J. et al. Spatial variation in the benthic community composition of coral reefs in the Wakatobi Marine National Park, Indonesia: Updated baselines and limited benthic community shifts. J. Mar. Biol. Assoc. U. K. 100, 37–44 (2019).

    Article 

    Google Scholar 

  • 61.

    Roth, F., Lange, I., Sánchez Noguera, C., Carvalho, S. & Wild, C. Simulated overfishing and natural eutrophication promote the relative success of a non-indigenous ascidian in coral reefs at the Pacific coast of Costa Rica. Aquat. Invasions 12, 435–446 (2017).

    Article 

    Google Scholar 

  • 62.

    Plass-Johnson, J. G. et al. Spatio-temporal patterns in the coral reef communities of the Spermonde archipelago, 2012–2014, II: Fish assemblages display structured variation related to benthic condition. Front. Mar. Sci. 5, 36 (2018).

    Article 

    Google Scholar 

  • 63.

    Russ, G. R., Rizzari, J. R., Abesamis, R. A. & Alcala, A. C. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol. Appl. 31, e02224 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Atrigenio, M. P. & Aliño, P. M. Effects of the soft coral Xenia puertogalerae on the recruitment of scleractinian corals. J. Exp. Mar. Biol. Ecol. 203, 179–189 (1996).

    Article 

    Google Scholar 

  • 65.

    Maida, M., Sammarco, P. W. & Coll, J. C. Effects of soft corals on scleractinian coral recruitment. II: Allelopathy, spat survivorship and reef community structure. Mar. Ecol. 22, 397–414 (2001).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Helber, S. B., Hoeijmakers, D. J. J., Muhando, C. A., Rohde, S. & Schupp, P. J. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 13, e0197617 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    de Goeij, J., Lesser, M. P. & Pawlick, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges (eds Carballo, J. & Bell, J.) (Springer, 2017).

    Google Scholar 

  • 68.

    Loh, T.-L., McMurray, S. E., Henkel, T. P., Vicente, J. & Pawlik, J. R. Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ 3, e901 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).

    ADS 
    Article 

    Google Scholar 

  • 70.

    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).

    ADS 
    Article 

    Google Scholar 

  • 71.

    McMurray, S. E., Blum, J. E. & Pawlik, J. R. Redwood of the reef: Growth and age of the giant barrel sponge Xetospongia muta in the Florida Keys. Mar. Biol. 155, 159–171 (2008).

    Article 

    Google Scholar 

  • 72.

    Yomogida, M., Mizuyama, M., Kubomura, T. & Davis Reimer, J. Disappearance and return of an outbreak of the coral-killing cyanobacteriosponge Terpios hoshinota in Southern Japan. Zool. Stud. 56, e7 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific?. Sci. Rep. 9, 18033 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    De Vantier, L. & Turak, E. Managing marine tourism in Bunaken National Park and adjacent waters, North Sulawesi, Indonesia (NRM III, 2004).

  • 75.

    Kohler, K. & Gill, S. Coral point count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).

    Article 

    Google Scholar 

  • 77.

    Froese, R. & Pauly, D. Editors. FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (2019).

  • 78.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Bierwagen, S. L., Emslie, M. J., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Reef-scale variability in fish and coral assemblages on the central Great Barrier Reef. Mar. Biol. 165, 144 (2018).

    Article 

    Google Scholar 

  • 80.

    R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • 81.

    Oksanen, J., et al. Package “vegan”: Community ecology package. R package version 2.5-6 (2019).

  • 82.

    White, D. & Gramacy, R. B. Package “maptree”: Mapping, pruning and graphing tree models. R package version 1.4-7 (2015).

  • 83.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 84.

    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).

    Article 

    Google Scholar 

  • 85.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).

    Article 

    Google Scholar 

  • 86.

    Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).

    Article 

    Google Scholar 

  • 87.

    Bello, F., Carmona, C. P., Mason, N. W. H. & Leps, J. Which trait dissimilarity for functional diversity: Trait means or trait overlap?. J. Sci. Veg. https://doi.org/10.1111/jvs.12008 (2012).

    Article 

    Google Scholar 

  • 88.

    Laliberté, E., Legendre, P. & Shipley B. Package “FD”: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.-0.12 (2015).


  • Source: Ecology - nature.com

    Salt tolerance-based niche differentiation of soil ammonia oxidizers

    Designing better batteries for electric vehicles