in

Multiple thresholds and trajectories of microbial biodiversity predicted across browning gradients by neural networks and decision tree learning

  • 1.

    Vik JO, Brinch CN, Boutin S, Stenseth NC. Interlinking hare and lynx dynamics using a century’s worth of annual data. Popul Ecol. 2008;50:267–74.

    Article 

    Google Scholar 

  • 2.

    Luo G, Han Q, Zhou D, Li L, Chen X, Li Y, et al. Moderate grazing can promote aboveground primary production of grassland under water stress. Ecol Complex. 2012;11:126–36.

    Article 

    Google Scholar 

  • 3.

    McNaughton S. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am Nat. 1979;113:691–703.

    Article 

    Google Scholar 

  • 4.

    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Zhang Z, Yan C, Krebs CJ, Stenseth NC. Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems. Ecol Modell. 2015;312:374–84.

    Article 

    Google Scholar 

  • 6.

    Devin S, Giamberini L, Pain-Devin S. Variation in variance means more than mean variations: what does variability tell us about population health status? Environ Int. 2014;73:282–7.

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, et al. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett. 2012;15:1397–405.

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Christin S, Hervet É, Lecomte N. Applications for deep learning in ecology. Methods Ecol Evol. 2019;10:1632–44.

    Article 

    Google Scholar 

  • 9.

    De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81:3178–92.

    Article 

    Google Scholar 

  • 10.

    Larsen PE, Field D, Gilbert JA. Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods. 2012;9:621–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Sperlea T, Kreuder N, Beisser D, Hattab G, Boenigk J, Heider D. Quantification of the covariation of lake microbiomes and environmental variables using a machine learning‐based framework. Mol Ecol. 2021;30:2131–44.

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Schiel DR, Lilley SA, South PM. Ecological tipping points for an invasive kelp in rocky reef algal communities. Mar Ecol Prog Ser. 2018;587:93–104.

    Article 

    Google Scholar 

  • 13.

    Robinson B, Cohen JS, Herman JD. Detecting early warning signals of long-term water supply vulnerability using machine learning. Environ Model Softw. 2020;131:104781.

    Article 

    Google Scholar 

  • 14.

    Hessen DO, Andersen T, Lyehe A. Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol Oceanogr. 1990;35:84–99.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem. 2013;405:109–24.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Coble PG, Lead J, Baker A, Reynolds DM, Spencer RG (eds). Aquatic organic matter fluorescence. Cambridge: Cambridge University Press; 2014.

  • 17.

    Finstad AG, Andersen T, Larsen S, Tominaga K, Blumentrath S, de Wit HA, et al. From greening to browning: catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Sci Rep. 2016;6:1–8.

    Article 
    CAS 

    Google Scholar 

  • 18.

    Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 2007;450:537–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    de Wit HA, Valinia S, Weyhenmeyer GA, Futter MN, Kortelainen P, Austnes K, et al. Current browning of surface waters will be further promoted by wetter climate. Environ Sci Technol Lett. 2016;3:430–5.

    Article 
    CAS 

    Google Scholar 

  • 20.

    Meyer-Jacob C, Tolu J, Bigler C, Yang H, Bindler R. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring. Proc Natl Acad Sci USA. 2015;112:6579–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Nelson DM, Smith W Jr. Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance‐mixing regime. Limnol Oceanogr. 1991;36:1650–61.

    Article 

    Google Scholar 

  • 22.

    Thrane J-E, Hessen DO, Andersen T. The absorption of light in lakes: negative impact of dissolved organic carbon on primary productivity. Ecosystems. 2014;17:1040–52.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Tranvik LJ. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. In: Salonen KKT, Jones RI, editors. Dissolved organic matter in lacustrine ecosystems. Vol. 73. Dordrecht: Springer; 1992. p. 107–14.

  • 24.

    Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science. 2011;331:50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Cole JJ, Caraco NF, Kling GW, Kratz TK. Carbon dioxide supersaturation in the surface waters of lakes. Science. 1994;265:1568–70.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Yang H, Andersen T, Dörsch P, Tominaga K, Thrane JE, Hessen DO. Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry. 2015;126:211–25.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Cottrell MT, Kirchman DL. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Crump BC, Kling GW, Bahr M, Hobbie JE. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol. 2003;69:2253–68.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Jones SE, Newton RJ, McMahon KD. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ Microbiol. 2009;11:2463–72.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Kritzberg ES, Langenheder S, Lindström ES. Influence of dissolved organic matter source on lake bacterioplankton structure and function–implications for seasonal dynamics of community composition. FEMS Microbiol Ecol. 2006;56:406–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Lindström ES. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol. 2000;40:104–13.

    PubMed 
    Article 

    Google Scholar 

  • 32.

    D’Andrilli J, Junker JR, Smith HJ, Scholl EA, Foreman CM. DOM composition alters ecosystem function during microbial processing of isolated sources. Biogeochemistry. 2019;142:281–98.

    Article 
    CAS 

    Google Scholar 

  • 33.

    Eiler A, Langenheder S, Bertilsson S, Tranvik LJ. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl Environ Microbiol. 2003;69:3701–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Guillemette F, del Giorgio PA. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol Oceanogr. 2011;56:734–48.

    CAS 
    Article 

    Google Scholar 

  • 35.

    Judd KE, Crump BC, Kling GW. Variation in dissolved organic matter controls bacterial production and community composition. Ecology. 2006;87:2068–79.

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrasé C. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microbiol. 2011;77:7490–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Kawasaki N, Benner R. Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr. 2006;51:2170–80.

    CAS 
    Article 

    Google Scholar 

  • 38.

    Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. The boundless carbon cycle. Nat Geosci. 2009;2:598–600.

    CAS 
    Article 

    Google Scholar 

  • 39.

    Osterholz H, Singer G, Wemheuer B, Daniel R, Simon M, Niggemann J, et al. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J. 2016;10:1717–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Cory RM, Kling GW. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol Oceanogr Lett. 2018;3:102–16.

    CAS 
    Article 

    Google Scholar 

  • 41.

    Khomich M, Kauserud H, Logares R, Rasconi S, Andersen T. Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiol Ecol. 2017;93:fiw231.

  • 42.

    Khomich M, Davey ML, Kauserud H, Rasconi S, Andersen T. Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol. 2017;27:36–46.

    Article 

    Google Scholar 

  • 43.

    Andersen T, Hessen DO, Håll JP, Khomich M, Kyle M, Lindholm M, et al. Congruence, but no cascade-pelagic biodiversity across 3 trophic levels in Nordic lakes. Ecol Evol. 2020;10:8153–65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Lyche Solheim A, Rekolainen S, Moe SJ, Carvalho L, Phillips G, Ptacnik R, et al. Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: synthesis of lakes results from the REBECCA project. Aquatic Ecol. 2008;42:317–34.

    CAS 
    Article 

    Google Scholar 

  • 45.

    Henriksen A, Skjelvåle BL, Mannio J, Wilander A, Harriman R, Curtis C, et al. Northern European lake survey, 1995: Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. Ambio. 1998;27:80–91.

  • 46.

    Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E. Regional species pools control community saturation in lake phytoplankton. Proc Royal Soc B. 2010;277:3755–64.

    Article 

    Google Scholar 

  • 47.

    Mitchell BG, Kahru M, Wieland J, Stramska M. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain CR, editors. Ocean optics protocols for satellite ocean color sensor validation, Revision IV. Vol. 4. Greenbelt, Maryland: Goddard Space Flight Center; 2003. p. 39–64.

  • 48.

    Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol. 2003;37:4702–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Bricaud A, Stramski D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling areaand the Sargasso Sea. Limnol Oceanogr. 1990;35:562–82.

    CAS 
    Article 

    Google Scholar 

  • 50.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.

    Article 

    Google Scholar 

  • 51.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Internet]. 2017.

  • 55.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB et al. vegan: community ecology package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan.

  • 56.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Venables W, Ripley B. Modern applied statistics with S. New York, NY: Springer; 2002.

  • 58.

    van Buuren S. MICE: multivariate imputation by chained equations. R package version 2.22. 2015. https://mran.microsoft.com/snapshot/2014-11-17/web/packages/mice/mice.pdf. Accessed 12 Aug 2019.

  • 59.

    Minchin PR. An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice IC, van der Maarel E, editors. Theory and models in vegetation science. Dordrecht: Springer; 1987. p. 89–107.

  • 60.

    Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.

    Article 

    Google Scholar 

  • 61.

    He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Malik J, Wang X, Yan S, Tang X, Jia J, editors. Proceedings of the IEEE international conference on computer vision. IEEE; 1730 Massachusetts Ave., NW Washington, DC, United States. 2015. p. 1026–34.

  • 62.

    Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al. Detecting novel associations in large data sets. Science. 2011;334:1518–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol. 2002;28:141–55.

    Article 

    Google Scholar 

  • 65.

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Qiu Z, Coleman MA, Provost E, Campbell AH, Kelaher BP, Dalton SJ, et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc Royal Soc B. 2019;286:20181887.

    Article 

    Google Scholar 

  • 67.

    Kovárová-Kovar K, Egli T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev. 1998;62:646–66.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. Nature. 2001;413:591–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Borchani H, Varando G, Bielza C, Larranaga P. A survey on multi‐output regression. Wiley Interdiscip Rev Data Min Knowl Discov. 2015;5:216–33.

    Article 

    Google Scholar 

  • 70.

    del Giorgio PA, Cole JJ. Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Evol Syst. 1998;29:503–41.

    Article 

    Google Scholar 

  • 71.

    Tranvik LJ. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol. 1990;56:1672–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Hilbe C, Nowak MA, Sigmund K. Evolution of extortion in iterated prisoner’s dilemma games. Proc Natl Acad Sci USA. 2013;110:6913–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Palen WJ, Schindler DE, Adams MJ, Pearl CA, Bury RB, Diamond SA. Optical characteristics of natural waters protect amphibians from UV‐B in the US Pacific Northwest. Ecology. 2002;83:2951–7.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Salt tolerance-based niche differentiation of soil ammonia oxidizers

    Designing better batteries for electric vehicles