in

Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework

  • 1.

    Convention on Biological Diversity (UN, 1992).

  • 2.

    Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); http://www.cbd.int/sp/

  • 3.

    Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN, 2015).

  • 4.

    Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020).

  • 5.

    Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://doi.org/10.5281/zenodo.3831673

  • 6.

    Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. https://doi.org/10.1111/conl.12762 (2020).

  • 7.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Piipponen-Doyle, S., Bolam, F. C. & Mair, L. Disparity between ecological and political timeframes for species conservation targets. Biodivers. Conserv. 30, 1899–1912 (2021).

    Article 

    Google Scholar 

  • 11.

    Keith, D. A. et al. The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).

    Article 

    Google Scholar 

  • 12.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Open-Ended Working Group On The Post-2020 Global Biodiversity Framework First Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021).

  • 17.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article 

    Google Scholar 

  • 18.

    Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).

    Article 

    Google Scholar 

  • 20.

    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).

    Article 

    Google Scholar 

  • 21.

    Hunter, D. et al. Including Food Systems, Biodiversity, Nutrition and Dietary Health in the Zero Draft of the Post-2020 Global Biodiversity Framework (Alliance of Bioversity International and the International Center for Tropical Agriculture and the United Nations Environment Programme, 2020); https://hdl.handle.net/10568/107096

  • 22.

    Halewood, M., Ferreira de Souza Dias, B., Nnadozie, K., Noriega, I. & Toledo, A. Including Access and Benefit Sharing in the Post-2020 Global Biodiversity Framework (AfricaRice, Alliance of Bioversity International and CIAT, ICARDA, ICRISAT, IITA, ILRI, CIMMYT, CIP, IRRI, World Agroforestry Centre, The Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, UNEP and The ABS Capacity Development Initiative, 2020); https://cgspace.cgiar.org/handle/10568/111273

  • 23.

    Delabre, I. et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7, eabc8259 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Lyons, M. B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).

    Article 

    Google Scholar 

  • 26.

    Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020).

  • 27.

    Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).

    Article 

    Google Scholar 

  • 28.

    Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 619–620, 249–257 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria v. 1.1 (IUCN, 2017).

  • 31.

    Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).

    Article 

    Google Scholar 

  • 32.

    Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 0, e12665 (2019).

    Google Scholar 

  • 33.

    Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).

    Article 

    Google Scholar 

  • 34.

    Mace, G. M. The ecology of natural capital accounting. Oxford Rev. Econ. Policy 35, 54–67 (2019).

    Article 

    Google Scholar 

  • 35.

    Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the tenth conference of the parties to the convention on biological diversity. Glob. Environ. Politics 14, 41–63 (2014).

    Article 

    Google Scholar 

  • 40.

    Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Martínez-Jauregui, M., Touza, J., White, P. C. L. & Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 121, 107203 (2021).

    Article 

    Google Scholar 

  • 42.

    Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Shi, J., Ma, K., Wang, J., Zhao, J. & He, K. Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodivers. Conserv. 19, 1279–1295 (2010).

    Article 

    Google Scholar 

  • 45.

    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article 

    Google Scholar 

  • 46.

    Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).

    Article 

    Google Scholar 

  • 47.

    Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. https://doi.org/10.1111/gcb.15634 (2021).

  • 49.

    Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).

    Article 

    Google Scholar 

  • 50.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature https://doi.org/10.1038/s41586-019-1567-7 (2019).

  • 51.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Wilkins, S., Keith, D. A. & Adam, P. Measuring success: evaluating the restoration of a grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor. Ecol. 11, 489–503 (2003).

    Article 

    Google Scholar 

  • 56.

    Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).

    Article 

    Google Scholar 

  • 57.

    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Burgman, M. A., Ferson, S. & Akcakaya, H. R. Risk Assessment in Conservation Biology (Chapman and Hall, 1993).

  • 59.

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Update of the Zero Draft of the Post 2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).

  • 61.

    Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Burgass, M. J. et al. Three key considerations for biodiversity conservation in multilateral agreements. Conserv. Lett. 14, e12764 (2021).

    Article 

    Google Scholar 

  • 63.

    Rice, W. S., Sowman, M. R. & Bavinck, M. Using theory of change to improve post-2020 conservation: a proposed framework and recommendations for use. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.301 (2020).

  • 64.

    Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).

  • 66.

    Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0504-8 (2018).

  • 67.

    Niemeijer, D. & de Groot, R. S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 8, 14–25 (2008).

    Article 

    Google Scholar 

  • 68.

    Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26-27, 97–105 (2017).

    Article 

    Google Scholar 

  • 69.

    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).

  • 70.

    Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Turner, I. M. & T. Corlett, R. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).

    Article 

    Google Scholar 

  • 75.

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Hein, M. Y., Willis, B. L., Beeden, R. & Birtles, A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873–883 (2017).

    Article 

    Google Scholar 

  • 77.

    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).

    Article 

    Google Scholar 

  • 79.

    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).

    Article 

    Google Scholar 

  • 82.

    Bekessy, S. A. et al. The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158 (2010).

    Article 

    Google Scholar 

  • 83.

    SBSTTA Draft Monitoring Framework for the Post-2020 Global Biodiversity Framework for Review (Subsidiary Body on Scientific, Technical and Technological Advice, 2020); https://www.cbd.int/sbstta24/review.shtml

  • 84.

    Indicators for the Post-2020 Global Biodiversity Framework—Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership (UNEP-WCMC, 2020); https://www.cbd.int/sbstta24/review.shtml

  • 85.

    Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Proposed Indicators and Monitoring Approach for the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3Add.1 (Subsidiary Body on Scientific, Technical and Technological Advice, 2020).

  • 86.

    Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework. Addendum. Appendices: Preliminary Draft Monitoring Framework for the Goals And Preliminary Draft Monitoring Framework for Targets CBD/WG2020/2/3/Add.1 (CBD, 2020).

  • 87.

    UNEP-WCMC Indicators for the Post-2020 Global Biodiversity Framework. Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership and Incorporating Inputs from Peer Review CBD/SBSTTA/24/INF/20 (CBD, 2021).

  • 88.

    Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Proposed Headline Indicators of the Monitoring Framework for the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3/Add.1 (CBD, 2021).

  • 89.

    Geldmann, J. et al. Essential indicators for measuring site-based conservation effectiveness in the post-2020 global biodiversity framework. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).

  • 90.

    Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2020).

    Article 

    Google Scholar 

  • 91.

    Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).

    Article 

    Google Scholar 

  • 92.

    Brown, C. J. et al. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecol. Indic. 126, 107694 (2021).

    Article 

    Google Scholar 

  • 93.

    Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 Monthly Sea Ice Extent (NSIDC, 2017).

  • 94.

    Karger, D. N., Kessler, M., Lehnert, M. & Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01450-y (2021).

  • 95.

    Skowno, A. L., Jewitt, D. & Slingsby, J. A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. South Afr. J. Sci. 117, 8182 (2021).

    Google Scholar 

  • 96.

    Murray, N. J. et al. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. v. 1.0 (Wildlife Conservation Society, 2020).

  • 97.

    Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 35, 325–335 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Fuller, R. M., Smith, G. M. & Devereux, B. J. The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Observ. Geoinf. 4, 243–253 (2003).

    Article 

    Google Scholar 

  • 99.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    Article 

    Google Scholar 

  • 100.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 

    Google Scholar 

  • 101.

    Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 103.

    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B 280, 20122649 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 105.

    Fraixedas, S. et al. A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indic. 118, 106728 (2020).

    Article 

    Google Scholar 

  • 106.

    Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348 (2015).

    Article 

    Google Scholar 

  • 108.

    Peterson, G. D., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).

    Article 

    Google Scholar 

  • 109.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 110.

    Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, e3000247 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 111.

    Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring eological integrity within protected areas. Bioscience 53, 851–860 (2003).

    Article 

    Google Scholar 

  • 112.

    Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).

    Article 

    Google Scholar 

  • 113.

    Juffe-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation knowledge. PLoS ONE 11, e0160640 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 114.

    Rowland, J. A., Lee, C. K. F., Bland, L. M. & Nicholson, E. Testing the performance of ecosystem indices for biodiversity monitoring. Ecol. Indic. 116, 106453 (2020).

    Article 

    Google Scholar 

  • 115.

    Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 117.

    Fu, C. et al. Making ecological indicators management ready: assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 105, 16–28 (2019).

    Article 

    Google Scholar 

  • 118.

    Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).

    Article 

    Google Scholar 

  • 120.

    Stevenson, S. L. et al. Matching biodiversity indicators to policy needs. Conserv. Biol. 35, 522–532 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 121.

    Han, X. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).

    Article 

    Google Scholar 

  • 122.

    Stephenson, P. J. & Stengel, C. An inventory of biodiversity data sources for conservation monitoring. PLoS ONE 15, e0242923 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 123.

    Bhatt, R. et al. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).

    Article 

    Google Scholar 

  • 124.

    Hein, L. et al. Defining ecosystem assets for natural capital accounting. PLoS ONE 11, e0164460 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 125.

    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 126.

    Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 127.

    Goodwin, K. D. et al. DNA Sequencing as a tool to monitor marine ecological status. Front. Marine Sci. 4, 107 (2017).

    Article 

    Google Scholar 

  • 128.

    Pace, M. L., Carpenter, S. R. & Cole, J. J. With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13, 460–467 (2015).

    Article 

    Google Scholar 

  • 129.

    Scheffer, M., Carpenter, S. R., Dakos, V. & Nes, E. H. V. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).

    Article 

    Google Scholar 

  • 130.

    Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 131.

    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 132.

    Zhao, L.-X. et al. Fairy circles reveal the resilience of self-organized salt marshes. Sci. Adv. 7, eabe1100 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 133.

    Sievers, M. et al. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).

    Article 

    Google Scholar 

  • 134.

    Allen, C. R. et al. Quantifying spatial resilience. J. Appl Ecol. 53, 625–635 (2016).

    Article 

    Google Scholar 

  • 135.

    Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).

    Article 

    Google Scholar 

  • 136.

    Moonlight, P. W. et al. Expanding tropical forest monitoring into dry forests: The DRYFLOR protocol for permanent plots. Plants People Planet 3, 295–300 (2021).

    Article 

    Google Scholar 

  • 137.

    Réjou-Méchain, M. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 138.

    Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).

    Article 

    Google Scholar 

  • 139.

    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 140.

    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).

    Article 

    Google Scholar 

  • 141.

    Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).

    Article 

    Google Scholar 

  • 142.

    The IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org/

  • 143.

    An Indicator of the Conservation Status of Useful Wild Plants (CIAT, 2020); https://ciat.cgiar.org/usefulplants-indicator/

  • 144.

    Measuring Change in the Extent of Water-Related Ecosystems Over time. Sustainable Development Goal Monitoring Methodology Indicator 6.6.1 (UNEP, UN Water, 2020).

  • 145.

    Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Article 

    Google Scholar 

  • 146.

    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 9–20 (2015).

    Article 

    Google Scholar 

  • 147.

    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Article 

    Google Scholar 

  • 148.

    Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 149.

    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).

    Article 

    Google Scholar 

  • 150.

    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35 (2016).

    Article 

    Google Scholar 

  • 151.

    Ferrier, S., Harwood, T. D., Ware, C. & Hoskins, A. J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 117, 106554 (2020).

    Article 

    Google Scholar 

  • 152.

    Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).

    Article 

    Google Scholar 

  • 153.

    McRae, L., Deinet, S. & Freeman, R. The Diversity-Weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 154.

    Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26, 760–771 (2020).

    Article 

    Google Scholar 

  • 155.

    Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 156.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article 

    Google Scholar 

  • 157.

    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12592 (2020).

    Article 

    Google Scholar 

  • 158.

    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 159.

    DiMiceli, C., Townshend, J., Carroll, M. & Sohlberg, R. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sens. Environ. 254, 112271 (2021).

    Article 

    Google Scholar 

  • 160.

    Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Marine Sci. 6, 580 (2019).

    Article 

    Google Scholar 

  • 161.

    Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349–355 (2019).

    Article 

    Google Scholar 

  • 162.

    Kogan, F. N. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636 (1997).

    Article 

    Google Scholar 

  • 163.

    Stelzer, K., Simis, S. & Müller, D. Copernicus Global Land Operations, Cryosphere and Water, CGLOPS-2, Framework Service Contract N° 199496 (JRC): Product User Manual Lake Waters, 300M and 1KM products, Versions 1.3.0–1.4.0, Issue I1.10 (Copernicus, 2020).

  • 164.

    Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium 1783–1793 (2006).

  • 165.

    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    Article 

    Google Scholar 

  • 166.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 167.

    Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 168.

    Purvis, A. A single apex target for biodiversity would be bad news for both nature and people. Nat. Ecol. Evol. 4, 768–769 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 169.

    Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 170.

    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 171.

    Preston, B. J. & Adam, P. Describing and listing threatened ecological communities under the Threatened Species Conservation Act 1995 (NSW): part 1—the assemblage of species and the particular area. Environ. Plan. Law J. 21, 250–263 (2004).

    Google Scholar 

  • 172.

    Noss, R. F. Ecosystems as conservation targets. Trends Ecol. Evol. 11, 351 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 173.

    Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front Ecol. Environ. 16, 29–36 (2018).

    Article 

    Google Scholar 

  • 174.

    Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).

    Article 

    Google Scholar 

  • 175.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article 

    Google Scholar 

  • 176.

    Grafton, R. Q. et al. Realizing resilience for decision-making. Nat. Sustain. 2, 907–913 (2019).

    Article 

    Google Scholar 

  • 177.

    Chambers, J. C., Allen, C. R. & Cushman, S. A. Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00241 (2019).

  • 178.

    Higuera, P. E. et al. Integrating subjective and objective dimensions of resilience in fire-prone landscapes. Bioscience 69, 379–388 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 179.

    Newton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).

    Article 

    Google Scholar 

  • 180.

    Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecol. 40, 433–443 (2015).

    Article 

    Google Scholar 

  • 181.

    Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).

    Article 

    Google Scholar 

  • 182.

    Rohwer, Y. & Marris, E. Ecosystem integrity is neither real nor valuable. Conserv. Sci. Pract. 3, e411 (2021).

    Google Scholar 

  • 183.

    Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Scientific and Technical information to support the review of the Proposed Goals and Targets in the Updated Zero Draft of the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3/Add.2 (CBD, 2021).

  • 184.

    McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).

    Article 

    Google Scholar 

  • 185.

    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Salt tolerance-based niche differentiation of soil ammonia oxidizers

    Designing better batteries for electric vehicles