in

Male sperm storage impairs sperm quality in the zebrafish

  • 1.

    Ward, P. I. Intraspecific variation in sperm size characters. Heredity 80, 655–659 (1998).

    Article 

    Google Scholar 

  • 2.

    Schulte-Hostedde, A. I. & Montgomerie, R. Intraspecific variation in ejaculate traits of the northern watersnake (Nerodia sipedon). J. Zool. 270, 147–152. https://doi.org/10.1111/j.1469-7998.2006.00101.x (2006).

    Article 

    Google Scholar 

  • 3.

    Morrow, E. H. & Gage, A. R. Consistent signicant variation between individual males in spermatozoal morphometry. J. Zool. 254, 147–153 (2001).

    Article 

    Google Scholar 

  • 4.

    Locatello, L., Pilastro, A., Deana, R., Zarpellon, A. & Rasotto, M. B. Variation pattern of sperm quality traits in two gobies with alternative mating tactics. Funct. Ecol. 21, 975–981 (2007).

    Article 

    Google Scholar 

  • 5.

    Iglesias-Carrasco, M., Harrison, L., Jennions, M. D. & Head, M. L. Combined effects of rearing and testing temperatures on sperm traits. J. Evol. Biol. 33, 1715–1724. https://doi.org/10.1111/jeb.13710 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Evans, J. P. & Magurran, A. E. Geographic variation in sperm production by Trinidadian guppies. Proc. R. Soc. B-Biol. Sci. 266, 2083–2087 (1999).

    Article 

    Google Scholar 

  • 7.

    Morrow, E. H., Leijon, A. & Meerupati, A. Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster. J. Evol. Biol. 21, 1692–1702. https://doi.org/10.1111/j.1420-9101.2008.01585.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Firman, R. C., Klemme, I. & Simmons, L. W. Strategic adjustments in sperm production within and between two island populations of house mice. Evolution 67, 3061–3070. https://doi.org/10.5061/dryad.87pk2 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Taborsky, M. Sperm competition in fish: ‘bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Kustra, M. C. & Alonzo, S. H. Sperm and alternative reproductive tactics: a review of existing theory and empirical data. Philos. Trans. R. Soc. B-Biol. Sci. 375, 20200075. https://doi.org/10.1098/rstb.2020.0075 (2020).

    Article 

    Google Scholar 

  • 11.

    Marshall, D. J. Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. J. Exp. Biol. 218, 107–113. https://doi.org/10.1242/jeb.106427 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Vega-Trejo, R. et al. The effects of male age, sperm age and mating history on ejaculate senescence. Funct. Ecol. 33, 1267–1279. https://doi.org/10.1111/1365-2435.13305 (2019).

    Article 

    Google Scholar 

  • 13.

    Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 94, 1722–1739. https://doi.org/10.1111/brv.12524 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Johnson, S. L. et al. Evidence that fertility trades off with early offspring fitness as males age. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2017.2174 (2018).

    Article 

    Google Scholar 

  • 15.

    Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Velando, A., Noguera, J. C., Drummond, H. & Torres, R. Senescent males carry premutagenic lesions in sperm. J. Evol. Biol. 24, 693–697 (2011).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Pilastro, A., Scaggiante, M. & Rasotto, M. B. Individual adjustment of sperm expenditure accords with sperm competition theory. Proc. Natl. Acad. Sci. U.S.A. 99, 9913–9915 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Nicholls, E. H., Burke, T. & Birkhead, T. R. Ejaculate allocation by male sand martins, Riparia riparia. Proc. R. Soc. B-Biol. Sci. 268, 1265–1270. https://doi.org/10.1098/rspb.2001.1615 (2001).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Oppliger, A., Hosken, D. J. & Ribi, G. Snail sperm production characteristics vary with sperm competition risk. Proc. R. Soc. B-Biol. Sci. 265, 1527–1534 (1998).

    Article 

    Google Scholar 

  • 20.

    Crean, A. J. & Marshall, D. J. Gamete plasticity in a broadcast spawning marine invertebrate. Proc. Natl. Acad. Sci. U.S.A. 105, 13508–13513 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Fisher, H. S., Hook, K. A., Weber, W. D. & Hoekstra, H. E. Sibling rivalry: males with more brothers develop larger testes. Ecol. Evol. 8, 8197–8203. https://doi.org/10.1002/ece3.4337 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Ramm, S. A. & Stockley, P. Adaptive plasticity of mammalian sperm production in response to social experience. Proc. R. Soc. B-Biol. Sci. 276, 745–751 (2009).

    Article 

    Google Scholar 

  • 23.

    Pizzari, T., Cornwallis, C. K. & Froman, D. P. Social competitiveness associated with rapid fluctuations in sperm quality in male fowl. Proc. R. Soc. B-Biol. Sci. 274, 853–860. https://doi.org/10.1098/rspb.2006.0080 (2007).

    Article 

    Google Scholar 

  • 24.

    Silva, W. et al. The effects of male social environment on sperm phenotype and genome integrity. J. Evol. Biol. 32, 535–544. https://doi.org/10.1111/jeb.13435 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Firman, R. C., Garcia-Gonzalez, F., Simmons, L. W. & Andre, G. I. A competitive environment influences sperm production, but not testes tissue composition, in house mice. J. Evol. Biol. 31, 1647–1654. https://doi.org/10.1111/jeb.13360 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Bozynski, C. C. & Liley, N. R. The effect of female presence on spermiation, and of male sexual activity on “ready” sperm in the male guppy. Anim. Behav. 65, 53–58. https://doi.org/10.1006/Anbe.2002.2024 (2003).

    Article 

    Google Scholar 

  • 27.

    Aitken, R. J. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159, R189–R201. https://doi.org/10.1530/REP-19-0452 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).

    Article 

    Google Scholar 

  • 29.

    Pizzari, T., Dean, R., Pacey, A., Moore, H. & Bonsall, M. B. The evolutionary ecology of pre- and post-meiotic sperm senescence. Trends Ecol. Evol. 23, 131–140. https://doi.org/10.1016/j.tree.2007.12.003 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Gasparini, C., Dosselli, R. & Evans, J. P. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol. Lett. 1, 16–25. https://doi.org/10.1002/evl3.2 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Reinhardt, K. & Turnell, B. Sperm ageing: a complex business. Funct. Ecol. 33, 1188–1189. https://doi.org/10.1098/rspb.2018.2873 (2019).

    Article 

    Google Scholar 

  • 32.

    Tarin, J. J., Pérez-Albalà, S. & Cano, A. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update 6, 532–549 (2000).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Li, J. et al. The effect of male sexual abstinence periods on the clinical outcomes of fresh embryo transfer cycles following assisted reproductive technology: a meta-analysis. Male Sexual Reprod. Health 4, 1–8 (2020).

    Google Scholar 

  • 34.

    Periyasamy, A. J. et al. Does duration of abstinence affect the live-birth rate after assisted reproductive technology? A retrospective analysis of 1,030 cycles. Fertil. Steril. 108, 988–992. https://doi.org/10.1016/j.fertnstert.2017.08.034 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    World Health Organization. WHO laboratory manual for the examination and processing of human semen 5th ed. (Geneva: World Health Organization, 2010).

  • 36.

    Comar, V. A. et al. Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assist. Reprod. 21, 306–312. https://doi.org/10.5935/1518-0557.20170052 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Gasparini, C., Kelley, J. L. & Evans, J. P. Male sperm storage compromises sperm motility in guppies. Biol. Let. 10, 20140681. https://doi.org/10.1098/rsbl.2014.0681 (2014).

    Article 

    Google Scholar 

  • 38.

    Poli, F., Immler, S., Gasparini, C. & Taborsky, M. Effects of ovarian fluid on sperm traits and its implications for cryptic female choice in zebrafish. Behav. Ecol. 30, 1298–1305. https://doi.org/10.1093/beheco/arz077 (2019).

    Article 

    Google Scholar 

  • 39.

    Riesco, M. F., Valcarce, D. G., Martinez-Vazquez, J. M. & Robles, V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci. Rep. https://doi.org/10.1038/s41598-019-47702-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Hagedorn, M. & Carter, V. L. Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success. PLoS ONE 6, e21059. https://doi.org/10.1371/journal.pone.0021059 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Zajitschek, S., Hotzy, C., Zajitschek, F. & Immler, S. Short-term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish. Proc. R. Soc. B-Biol. Sci. 281, 20140422. https://doi.org/10.1098/rspb.2014.0422 (2014).

    Article 

    Google Scholar 

  • 42.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

  • 43.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).

    Article 

    Google Scholar 

  • 44.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 45.

    Fox, J. & Weisberg, S. An R companion to applied regression 3rd edn. (Sage, 2019).

    Google Scholar 

  • 46.

    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).

    Article 

    Google Scholar 

  • 47.

    White, J. et al. Multiple deleterious effects of experimentally aged sperm in a monogamous bird. Proc. Natl. Acad. Sci. U.S.A. 105, 13947–13952 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Reinhardt, K. & Siva-Jothy, M. T. An advantage for young sperm in the house cricket Acheta domesticus. Am. Nat. 165, 718–723 (2005).

    Article 

    Google Scholar 

  • 49.

    Gage, M. J. G. et al. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr. Biol. (CB) 14, 44–47 (2004).

    CAS 

    Google Scholar 

  • 50.

    Fitzpatrick, J. L. et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc. Natl. Acad. Sci. U.S.A. 106, 1128–1132. https://doi.org/10.1073/pnas.0809990106 (2009).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Alavioon, G. et al. Haploid selection within a single ejaculate increases offspring fitness. Proc. Natl. Acad. Sci. U.S.A. 114, 8053–8058. https://doi.org/10.1073/pnas.1705601114 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Cosson, J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 76, 240–279. https://doi.org/10.1111/j.1095-8649.2009.02504.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Levitan, D. R. Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. Proc. R. Soc. B-Biol. Sci. 267, 531–534 (2000).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Taborsky, M., Schütz, D., Goffinet, O. & van Doorn, G. S. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions. Sci. Adv. 4, 8563 (2018).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Cardozo, G., Devigili, A., Antonelli, P. & Pilastro, A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J. Evol. Biol. 33, 1294–1305. https://doi.org/10.1111/jeb.13673 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 56.

    delBarco-Trillo, J. et al. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc. R. Soc. B-Biol. Sci. 283, 20152708 (2016).

    Article 

    Google Scholar 

  • 57.

    Firman, R. C., Young, F. J., Rowe, D. C., Duong, H. T. & Gasparini, C. Sexual rest and post-meiotic sperm ageing in house mice. J. Evol. Biol. 28, 1373–1382. https://doi.org/10.1111/jeb.12661 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Gosálvez, J., López-Fernández, C., Hermoso, A., Fernández, J. L. & Kjelland, M. E. Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability—implications for fisheries and aquaculture. Aquaculture 433, 173–182. https://doi.org/10.1016/j.aquaculture.2014.05.036 (2014).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Perez-Cerezales, S., Martinez-Paramo, S., Beirao, J. & Herraez, M. P. Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction 139, 989–997. https://doi.org/10.1530/REP-10-0037 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Quay, W. Cloacal sperm in spring migrants: occurrence and interpretation. The Condor 87, 273–280 (1985).

    Article 

    Google Scholar 

  • 61.

    Thomsen, R., Soltis, J. & Teltscher, C. Sperm competition and the function of male masturbation in non-human primates. Sexual selection and reproductive competition in primates: New perspectives and directions (Jones, 2003).

  • 62.

    Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40. https://doi.org/10.1089/zeb.2006.9997 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 63.

    Spence, R. & Smith, C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol. 17, 779–783. https://doi.org/10.1093/beheco/arl016 (2006).

    Article 

    Google Scholar 

  • 64.

    Spence, R. & Smith, C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim. Behav. 69, 1317–1323. https://doi.org/10.1016/j.anbehav.2004.10.010 (2005).

    Article 

    Google Scholar 

  • 65.

    Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).

    Article 

    Google Scholar 

  • 66.

    Parker, G. A. Sperm competition games: raffles and roles. Proc. R. Soc. B-Biol. Sci. 242, 120–126 (1990).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Energy storage from a chemistry perspective

    Smarter regulation of global shipping emissions could improve air quality and health outcomes