in

Successful artificial reefs depend on getting the context right due to complex socio-bio-economic interactions

When introducing ARs as a fisheries management tool to Senegal, the Japanese management had the mindset of Japanese stakeholders, i.e., introducing fishing rights. However, after discussions with Senegalese stakeholders, it was decided that no-take areas would be delineated around ARs because the establishment of a strong fishing rights regime was not socially acceptable to the Senegalese fishing community. Japanese governance is based on the acceptance and respect of fishers towards individual, private AR concessions. In contrast, fishers in Senegal, and more widely in West Africa, are characterized by high mobility, particularly in the context of climate change and overexploitation18,19. Consequently, respect for local management regulations is lower, with open access being generally assumed. The basic concept of implementing a no-take area on the AR was not easily accepted by fishers. The immersion of AR concrete blocks was set as a top priority by managers at the expense of more complex socio-economic considerations, such as consciousness-raising activities and self-sustaining participative monitoring of the AR.

The clear contradiction between the ecological knowledge of fishers and their behavior was explained by the well-known effects of open access resources on individual behavior. This phenomenon was also observed in our mathematical model. The processes in the mathematical model are in accordance with those perceived by the fishers, so that the results are also those expected by fisher’s local ecological knowledge. It is interesting to notice that the theoretical results presented here are the mathematical solutions of the model at equilibrium between fishing effort and fish population growth, i.e. after an oscillation period. It is obvious that short-term effect of fishing on the AR is always to increase the catch, but many fishers did perceive the longer-term effect of decreasing catches. The potential negative effect of the AR on catch when there is high fish attraction combined with high fishing pressure on the AR might explain the reluctance of a part of the fishers community to AR deployment (Fig. 2). In particular, the model illustrates that the AR attraction effect strongly determines the impact of the management. In general, fish attraction is the most immediate effect perceived after AR deployment11, as was true for our study16. Though the AR volume was relatively small (70 m3), the empty space between the higher blocks also contributes approximately 280 to 570 m3 of good habitat/refuge for schooling fish; therefore, it is actually difficult to accurately describe the volume that affects fish. Thus, it is difficult to say whether this AR is below or above the forecasted optimal volume in absence of fishing (120m3 with model parameters). The existence of an optimal volume for AR was also suggested by field studies as a trade off between food supply and refuge20, in line with our results. For management purposes, it is interesting to determine whether the AR is above or below this optimal level because if the volume is too small, the model predicted that any level of fishing on the AR would, in the long term, decrease the catch in the considered area. On the other hand, if the volume is above the optimal level, a small fishing effort on the AR could be authorized and would increase the total catch in the area.

Field observation showed that the fish attraction effect was strong16 but precise estimation of this parameter cannot be inferred, as this would need, ideally, individual fish trajectories. Future field research on the attraction effect may permit estimating the AR attraction parameters. The model sensitivity test showed that the stronger the attraction parameter, the better the impact of the AR for the fisheries in case of no or small fishing effort on the AR (Fig. 3). But at the same time, the attraction is a strong incentive for fishers to fish on the AR, and the predicted benefit for fisheries in the fishing area rapidly vanishes when fishing effort on AR increases. This in turn provides further incentive for fishers to fish the AR, challenging the surveillance capacity. If fish attractiveness is strong and too many fishers fish on the AR, catch in the area will be concentrated on the AR, while the adjacent fishing area will be depleted, with catch levels lower than those prior to AR deployment.

Specifically, in the context of generalized overfishing in Senegal21, deciding not to fish on the AR represents significant individual loss, despite being recognized as beneficial, globally22. It has been argued that this situation would rarely occur in small-scale fisheries, due to existing arrangements between individuals23. However, in the context of the highly mobile Senegalese artisanal fishing fleet and its overcapacity, as soon as the AR in Yenne was no longer subject to surveillance, it rapidly attracted fishers from other villages. Also, pre-existing arrangements between fishers might be overruled when new ARs are created, changing the structure of existing fishing grounds.

At the time of the survey, the surveillance system set up by the co-management entities was not operational in our case study, because it was dependent on temporally limited external financing. These limitations are typical of short-term projects that focus on a single restricted area for a pre-determined duration, usually up to two years (e.g., NGOs, World Bank). Local fishers perceptions were globally in line with the model prediction that this AR fails to improve fisheries yield when surveillance is not in place to ensure AR regulations are observed, despite effective fish attraction and production existing in the AR.

The model predicted that enhanced production on ARs could not keep pace with unrestricted access, which might be particularly true in Senegal where fishing effort rapidly reorganizes itself according to local yields24. Enhanced production due to the AR largely increases the catch if the fishing pressure on the AR remains null or very low, but it has no effect on the catch for higher fishing pressures on the AR (Fig. 3). These results were stable even if fish population growth, fish catchability, mobility and economic parameters could modulate the predicted amplitude of the catch and AR optimal volume. These results are consistent with existing theoretical studies of the impact of fisher movement to high production areas in and around MPAs25. Taking into account several species and their interactions (predation, competition) would lead to a very complex ecosystem model specific to the area (e.g. 26), with necessarily more assumptions. This model would necessarily be more difficult to share with fishers and other stakeholders. Both to simplify model structure and facilitate communication of results to stakeholders, we assumed in our model that the balance of entries exits and is in equilibrium, so that the migratory species did not affect the long-term equilibrium between fishing effort and fish abundance.

The design of ARs could be adjusted to reduce the effect of illegal fishing by passively preventing both industrial and artisanal fishing activity. Complex structures are more effective for fish production and attraction27. We showed that, although production might have a limited effect on total catch, attraction can largely increase AR efficiency (total catch) if the rate of illegal fishing rate is very low or absent. Complex structures protect fish more effectively from small scale fishing gear28, including divers (Pers. Comm., Mamadou Sarr, Ouakam fishers committee). Thus, ARs should be appropriately designed to help mitigate potential issues28. Such designs might be more costly, and do not exclude the need for surveillance, but would enhance fisheries management, especially when surveillance cannot capture low levels of illegal fishing.

Finally, if socio-economic and governance conditions are not met, well-intentioned AR projects will likely disturb the existing equilibrium among fishers that have different levels of access to the AR. Poor governance of marine resources has previously been described in West Africa, particularly in Senegal29, as has the failure of AR projects in a number of other developing countries9, which further deteriorate fishers trust and management plans efficiency30. In order to avoid that, NGO and governmental agencies driving ARs projects must consider that AR management induces collective costs before providing potentially collective gains. Thus, co-management that involves governmental institutions and fisher communities is required. Future management and adaptation plans for fishers, particularly in developing countries, should, therefore, focus efforts on raising long-term awareness of actors in both government institutions and fishing communities. At the level of institutional or development partners, long-term management costs should be included in the set-up of AR projects. For example, the local fishers committee of Yenne recently reported the establishment of a collective ship chandler whose profits are used to finance AR surveillance during the daytime. Subsequently, fishers noted an improvement in catches around the AR, even though illegal fishing likely continues on the AR at night (Pers. Comm. chair of local fishers committee). These observations support model predictions that low levels of illegal fishing might not disturb the positive impact of the AR. Alternatively surveillance effort could be supported by the community if benefits were managed according to ancestral traditions. Indeed, “no take area” regime on the AR would be in line with some past West African tribal laws, applied before the colonization era, which set marine area where fishing activities were restricted for occasional community celebrations. Collective processes where fishers and other stakeholders can design temporary no-take zones around the AR could increase fishers trust and compliance to the rules, fostering a positive socio-ecological feedback loop30.

Hybridization of local and scientific knowledge, through the integration of natural sciences and social sciences, is key point for governance setting31,32,33. Indeed, the communication of the resulting hybrid knowledge in specific events gathering local stakeholders helps strengthen fisheries co-management for the establishment of surveillance and regulatory frameworks. This phenomenon was experienced during the public restitution of the present study with the community, fishers, children’s from local schools and governmental stakeholders. Science popularization of the study results was in French and local language (Wolof) retransmitted on national news (available at https://www.youtube.com/watch?v=yQqFU2P4XZU). Posters were exposed during the event, including pictures of local fishers interviewed and statements reflecting their own perception of how the artificial reef interacts with ecological processes and fisheries dynamics. Straightaway, stakeholders and local promoters of AR publicly expressed their concern and willingness to prioritize the setting up an efficient AR surveillance independent from external resources prior to increase AR deployments. Knowledge hybridization could produce more specific models that could be used for warning and advice, for example by considering potential impacts of ARs on species compositions3,34,35, environmental parameters36, and cascade effects on the trophic food web37. However this approach would need to be adapted to local social-ecological governance, which might require dedicated political-anthropological studies (see concept of adaptive co-management32).

In summary, best practices should involve all stakeholders, consider local specificities, such as site configuration, governance, ecosystem, availability of ad hoc human and financial resources for AR surveillance, and define AR volume and design accordingly to these parameters. Thus, if plans exist to deploy ARs at large scales we recommend that legislation is strengthened, with detailed Environmental and social Impact Assessments38 to implement ARs, including considerations of long-term governance.


Source: Ecology - nature.com

Energy storage from a chemistry perspective

Smarter regulation of global shipping emissions could improve air quality and health outcomes