Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).
Google Scholar
Thompson, R. C., Wilson, B. J., Tobin, M. L., Hill, A. S. & Hawkins, S. J. Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales. J. Exp. Mar. Biol. Ecol. 202, 73–84 (1996).
Google Scholar
Christie, H., Jørgensen, N. M. & Norderhaug, K. M. Bushy or smooth, high or low; importance of habitat architecture and vertical position for distribution of fauna on kelp. J. Sea Res. 58, 198–208 (2007).
Google Scholar
Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
Google Scholar
Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).
Google Scholar
Mineur, F. et al. European seaweeds under pressure: Consequences for communities and ecosystem functioning. J. Sea Res. 98, 91–108 (2015).
Google Scholar
Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. PNAS 113, 13785–13790 (2016).
Google Scholar
Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
Google Scholar
Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).
Google Scholar
Piazzi, L. et al. Biodiversity in canopy-forming algae: Structure and spatial variability of the Mediterranean Cystoseira assemblages. Estuar. Coast. Shelf Sci. 207, 132–141 (2018).
Google Scholar
Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).
Google Scholar
Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).
Google Scholar
Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).
Google Scholar
Gubbay, S. et al. European Red List of Habitats. Part 1. Marine habitats. Luxembourg: Publications Office of the European Union (2016).
Perkol-Finkel, S., Ferrario, F., Nicotera, V. & Airoldi, L. Conservation challenges in urban seascapes: Promoting the growth of threatened species on coastal infrastructures. J. Appl. Ecol. 49, 1457–1466 (2012).
Google Scholar
Falace, A., Kaleb, S., Fuente, G. D. L., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018).
Google Scholar
Gianni, F., Bartolini, F., Airoldi, L. & Mangialajo, L. Reduction of herbivorous fish pressure can facilitate focal algal species forestation on artificial structures. Mar. Environ. Res. 138, 102–109 (2018).
Google Scholar
Gianni, F. et al. Optimizing canopy-forming algae conservation and restoration with a new herbivorous fish deterrent device. Restor. Ecol. 28, 750–756 (2020).
Google Scholar
Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: Methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).
Google Scholar
Fuente, G. D. L., Chiantore, M., Asnaghi, V., Kaleb, S. & Falace, A. First ex situ outplanting of the habitat-forming seaweed Cystoseira amentacea var. stricta from a restoration perspective. PeerJ 7, e7290 (2019).
Google Scholar
Tamburello, L. et al. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies. PLoS ONE 14, e0224477 (2019).
Google Scholar
Medrano, A. et al. From marine deserts to algal beds: Treptacantha elegans revegetation to reverse stable degraded ecosystems inside and outside a No-Take marine reserve. Restor. Ecol. 28, 632–644 (2020).
Google Scholar
Chryssovergis, F. & Panayotidis, P. Évolution des peuplements macrophytobenthiques le long d’un gradient d’eutrophisation. Oceanol. Acta 18, 649–658 (1995).
Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).
Google Scholar
Díez, I., Santolaria, A., Secilla, A. & Gorostiaga, J. M. Recovery stages over long-term monitoring of the intertidal vegetation in the ‘Abra de Bilbao’ area and on the adjacent coast (N. Spain). Eur. J. Phycol. 44, 1–14 (2009).
Google Scholar
Bringloe, T. T. et al. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39, 281–321 (2020).
Google Scholar
Guern, M. Embryologie de quelques espèces du genre Cystoseira Agardh 1821 (FUCALES). Vie et Milieu 649–680 (1962).
Dudgeon, S., Kübler, J. E., Wright, W. A., Vadas, R. L. & Petraitis, P. S. Natural variability in zygote dispersal of Ascophyllum nodosum at small spatial scales. Funct. Ecol. 15, 595–604 (2001).
Google Scholar
Mangialajo, L. et al. Zonation patterns and interspecific relationships of fucoids in microtidal environments. J. Exp. Mar. Biol. Ecol. 412, 72–80 (2012).
Google Scholar
Capdevila, P. et al. Recruitment patterns in the Mediterranean deep-water alga Cystoseira zosteroides. Mar. Biol. 162, 1165–1174 (2015).
Google Scholar
Assis, J. et al. A fine-tuned global distribution dataset of marine forests. Sci. Data 7, 119 (2020).
Google Scholar
Fabbrizzi, E. et al. Modeling macroalgal forest distribution at Mediterranean scale: Present status, drivers of changes and insights for conservation and management. Front. Mar. Sci. 7, 20 (2020).
Google Scholar
Benedetti-Cecchi, L., Tamburello, L., Maggi, E. & Bulleri, F. Experimental perturbations modify the performance of early warning indicators of regime shift. Curr. Biol. 25, 1867–1872 (2015).
Google Scholar
Bulleri, F., Benedetti-Cecchi, L., Ceccherelli, G. & Tamburello, L. A few is enough: A low cover of a non-native seaweed reduces the resilience of Mediterranean macroalgal stands to disturbances of varying extent. Biolical Invasions 19, 2291–2305 (2017).
Google Scholar
Rindi, L., Bello, M. D., Dai, L., Gore, J. & Benedetti-Cecchi, L. Direct observation of increasing recovery length before collapse of a marine benthic ecosystem. Nat. Ecol. Evol. 1, 1–7 (2017).
Google Scholar
Draisma, S. G. A., Ballesteros, E., Rousseau, F. & Thibaut, T. DNA sequence data demonstrate the polyphyly of the genus Cystoseira and other Sargassaceae genera (Phaeophyceae). J. Phycol. 46, 1329–1345 (2010).
Google Scholar
Bruno de Sousa, C. et al. Improved phylogeny of brown algae Cystoseira (Fucales) from the Atlantic-Mediterranean region based on mitochondrial sequences. PLoS ONE 14, e0210143 (2019).
Google Scholar
Jódar-Pérez, A. B., Terradas-Fernández, M., López-Moya, F., Asensio-Berbegal, L. & López-Llorca, L. V. Multidisciplinary analysis of Cystoseira sensu lato (SE Spain) suggest a complex colonization of the Mediterranean. J. Mar. Sci. Eng. 8, 961 (2020).
Google Scholar
Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. PNAS 101, 8998–9002 (2004).
Google Scholar
Reusch, T. B. H. & Hughes, A. R. The emerging role of genetic diversity for ecosystem functioning: Estuarine macrophytes as models. Estuaries and Coasts J ERF 29, 159–164 (2006).
Google Scholar
Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. PNAS 102, 2826–2831 (2005).
Google Scholar
Ehlers, A., Worm, B. & Reusch, T. B. H. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar. Ecol. Prog. Ser. 355, 1–7 (2008).
Google Scholar
Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).
Google Scholar
Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002) https://doi.org/10.1017/CBO9780511808999
.
Google Scholar
Cowen, R., Gawarkiewicz, G., Pineda, J., Thorrold, S. & Werner, F. Population connectivity in marine systems: An overview. Oceanography 20, 14–21 (2007).
Google Scholar
Mayr, E. Animal Species and Evolution. Animal Species and Evolution (Harvard University Press, 2013).
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983) https://doi.org/10.1017/CBO9780511623486
.
Google Scholar
Frankham, R. Conservation genetics. Annu. Rev. Genet. 29, 305–327 (1995).
Google Scholar
Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).
Google Scholar
Frankham, R. et al. Genetic Management of Fragmented Animal and Plant Populations (Oxford University Press, 2017).
Google Scholar
Planes, S., Jones, G. P. & Thorrold, S. R. Larval dispersal connects fish populations in a network of marine protected areas. PNAS https://doi.org/10.1073/pnas.0808007106 (2009).
Google Scholar
Pineda, J., Hare, J. A. & Sponaugle, S. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).
Google Scholar
Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).
Google Scholar
Buonomo, R. et al. Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp. Mar. Environ. Res. 138, 119–128 (2018).
Google Scholar
Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26, 766–780 (2017).
Google Scholar
Bermejo, R. et al. Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. Sci. Rep. 8, 10427 (2018).
Google Scholar
Engelen, A. H. et al. A population genetics toolbox for the threatened canopy-forming brown seaweeds Cystoseira tamariscifolia and C. amentacea (Fucales, Sargassaceae). J. Appl. Phycol. 29, 627–629 (2017).
Google Scholar
Thibaut, T. et al. Connectivity of populations of the seaweed Cystoseira amentacea within the Bay of Marseille (Mediterranean Sea): Genetic structure and hydrodynamic connections. crya 37, 233–255 (2016).
Google Scholar
Guiry, M.D. & Guiry, G.M. AlgaeBase. World-wide electronic publication (National University of Ireland, 2021) http://www.algaebase.org (Accessed 21 Jan 2021).
Sales, M. & Ballesteros, E. Shallow Cystoseira (Fucales: Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW Mediterranean): Relationships with environmental factors and anthropogenic pressures. Estuar. Coast. Shelf Sci. 84, 476–482 (2009).
Google Scholar
Robvieux, P. et al. First characterization of eight polymorphic microsatellites for Cystoseira amentacea var. stricta (Fucales, Sargassaceae). Conserv. Genet. Resour. 4, 923–925 (2012).
Google Scholar
Sadogurska, S. S., Neiva, J., Falace, A., Serrão, E. A. & Israel, Á. The genus Cystoseira s.l. (Ochrophyta, Fucales, Sargassaceae) in the Black Sea: Morphological variability and molecular taxonomy of Gongolaria barbata and endemic Ericaria crinita f. bosphorica comb. nov. Phytotaxa 480, 1–21 (2021).
Google Scholar
Bologa, A. S. & Sava, D. Progressive decline and present trend of Romanian Black Sea macroalgal flora. Cercetari Mar. 36, 31–60 (2006).
Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Mar. Biol. 156, 1223–1231 (2009).
Google Scholar
Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).
Google Scholar
Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).
Google Scholar
De Meeûs, T. et al. Deceptive combined effects of short allele dominance and stuttering: An example with Ixodes scapularis, the main vector of Lyme disease in the USA. bioRxiv https://doi.org/10.1101/622373 (2019).
Google Scholar
De Meeûs, T. Revisiting FIS, FST, Wahlund effects, and null alleles. J. Hered. 109, 446–456 (2018).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
Google Scholar
Manangwa, O. et al. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania. Mol. Ecol. Resour. 19, 757–772 (2019).
Google Scholar
Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
Google Scholar
Engel, C. R., Brawley, S. H., Edwards, K. J. & Serrão, E. Isolation and cross-species amplification of microsatellite loci from the fucoid seaweeds Fucus vesiculosus, F. serratus and Ascophyllum nodosum (Heterokontophyta, Fucaceae). Mol. Ecol. Notes 3, 180–182 (2003).
Google Scholar
Paulino, C. et al. Characterization of 12 polymorphic microsatellite markers in the sugar kelp Saccharina latissima. J. Appl. Phycol. 28, 3071–3074 (2016).
Google Scholar
Coleman, M. A., Dolman, G., Kelaher, B. P. & Steinberg, P. D. Characterisation of microsatellite loci in the subtidal habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales). Conserv. Genet. 9, 1015–1017 (2008).
Google Scholar
Coleman, M. A. & Brawley, S. H. Are life history characteristics good predictors of genetic diversity and structure? A case study of the intertidal alga Fucus spiralis (heterokontophyta; Phaeophyceae). J. Phycol. 41, 753–762 (2005).
Google Scholar
Coleman, M. A. & Brawley, S. H. Spatial and temporal variability in dispersal and population genetic structure of a rockpool alga. Mar. Ecol. Prog. Ser. 300, 63–77 (2005).
Google Scholar
Engel, C. R., Daguin, C. & Serrão, E. A. Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol. Ecol. 14, 2033–2046 (2005).
Google Scholar
Medrano, A. et al. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci. Rep. 10, 19219 (2020).
Google Scholar
Engelen, A. H. et al. Periodicity of propagule expulsion and settlement in the competing native and invasive brown seaweeds, Cystoseira humilis and Sargassum muticum (Phaeophyta). Eur. J. Phycol. 43, 275–282 (2008).
Google Scholar
Assis, J., Serrão, E. A., Claro, B., Perrin, C. & Pearson, G. A. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol. Ecol. 23, 2797–2810 (2014).
Google Scholar
Neiva, J. et al. Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS ONE 10, e0131530 (2015).
Google Scholar
Coleman, M. A. & Kelaher, B. P. Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast. Mar. Ecol. Prog. Ser. 381, 63–70 (2009).
Google Scholar
Boissin, E. et al. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Sci. Rep. 10, 21624 (2020).
Google Scholar
Olsen, J. L. et al. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol. Ecol. 13, 1923–1941 (2004).
Google Scholar
Peijnenburg, K. T. C. A., Breeuwer, J. A. J., Pierrot-Bults, A. C. & Menken, S. B. J. Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European Seas. Evolution 58, 1472–1487 (2004).
Google Scholar
Luttikhuizen, P. C., Campos, J., van Bleijswijk, J., Peijnenburg, K. T. C. A. & van der Veer, H. W. Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol. Phylogenet. Evol. 46, 1015–1030 (2008).
Google Scholar
Wilson, A. B. & Eigenmann Veraguth, I. The impact of Pleistocene glaciation across the range of a widespread European coastal species. Mol. Ecol. 19, 4535–4553 (2010).
Google Scholar
Riquet, F. et al. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 73, 817–835 (2019).
Google Scholar
Hewitt, G. M. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol. Evol. 3, 158–167 (1988).
Google Scholar
Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.07.015 (2020).
Google Scholar
McCoy, S. J., Krueger-Hadfield, S. A. & Mieszkowska, N. Evolutionary phycology: Toward a macroalgal species conceptual framework. J. Phycol. 56, 1404–1413 (2020).
Google Scholar
Neiva, J., Pearson, G. A., Valero, M. & Serrão, E. A. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evol. Biol. 12, 78 (2012).
Google Scholar
Whitlock, M. C. & McCauley, D. E. Indirect measures of gene flow and migration: FST ≠1/(4 Nm + 1). Heredity 82, 117–125 (1999).
Google Scholar
Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19, 3038–3051 (2010).
Google Scholar
Durrant, H. M. S. et al. Implications of macroalgal isolation by distance for networks of marine protected areas. Conserv. Biol. 28, 438–445 (2014).
Google Scholar
Engelen, A., Olsen, J., Breeman, A. & Stam, W. Genetic differentiation in Sargassum polyceratium (Fucales: Phaeophyceae) around the island of Curaçao (Netherlands Antilles). Mar. Biol. 139, 267–277 (2001).
Google Scholar
Billot, C., Engel, C. R., Rousvoal, S., Kloareg, B. & Valero, M. Current patterns, habitat discontinuities and population genetic structure: The case of the kelp Laminaria digitata in the English Channel. Mar. Ecol. Prog. Ser. 253, 111–121 (2003).
Google Scholar
Tatarenkov, A., Jönsson, R. B., Kautsky, L. & Johannesson, K. Genetic structure in populations of Fucus vesiculosus (phaeophyceae) over spatial scales from 10 m to 800 km. J. Phycol. 43, 675–685 (2007).
Google Scholar
Susini, M.-L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46, 605–611 (2007).
Google Scholar
Korotenko, K., Bowman, M. & Dietrich, D. High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea. Terrest. Atmos. Oceanic Sci. J. 21, 123–136 (2010).
Google Scholar
Barale, V., Schiller, C., Tacchi, R. & Marechal, C. Trends and interactions of physical and bio-geo-chemical features in the Adriatic Sea as derived from satellite observations. Sci. Total Environ. 353, 68–81 (2005).
Google Scholar
Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
Google Scholar
Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).
Google Scholar
Richard, B., A. & Wilks, A., R. Maps in S. AT&T Bell Laboratories Statistics Research Report [93.2] (1993).
Richard, B., A. & Wilks, A., R. Constructing a Geographical Database. AT&T Bell Lab-oratories Statistics Research Report [95.2] (1995).
R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2017).
Holleley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).
Google Scholar
Peakall, R. & Smouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
Google Scholar
Goudet, J. Fstat (Version 1.2): A computer program to calculate F-Statistics. J. Hered. 86, 485–486 (1995).
Google Scholar
De Meeûs, T., Guégan, J.-F. & Teriokhin, A. T. MultiTest V.1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinform. 10, 443 (2009).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Google Scholar
Oosterhout, C. V., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6, 255–256 (2006).
Google Scholar
Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).
Google Scholar
El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).
Google Scholar
Raymond, M. & Rousset, F. GENEPOP (Version 1.2): Population genetics Software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
Google Scholar
Szulkin, M., Bierne, N. & David, P. Heterozygosity-fitness correlations: A time for reappraisal. Evolution 64, 1202–1217 (2010).
Google Scholar
David, P., Pujol, B., Viard, F., Castella, V. & Goudet, J. Reliable selfing rate estimates from imperfect population genetic data. Mol. Ecol. 16, 2474–2487 (2007).
Google Scholar
Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).
Google Scholar
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
Google Scholar
Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Google Scholar
Jakobsson, M. & Rosenberg, N. A. Clumpp: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
Google Scholar
Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
Google Scholar
Séré, M., Thévenon, S., Belem, A. M. G. & De Meeûs, T. Comparison of different genetic distances to test isolation by distance between populations. Heredity 119, 55–63 (2017).
Google Scholar
Rousset, F. & Raymond, M. Statistical analyses of population genetic data: New tools, old concepts. Trends Ecol. Evol. 12, 313–317 (1997).
Google Scholar
Hijmans, R. J. Geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere. R package version 1.5–5. (2016).
Korotenko, K. A. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: An assessment of the environmental impacts. PeerJ 6, e5448 (2018).
Google Scholar
López-Márquez, V. et al. Seascape genetics and connectivity modelling for an endangered Mediterranean coral in the northern Ionian and Adriatic seas. Landsc. Ecol. 34, 2649–2668 (2019).
Google Scholar
Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
Google Scholar
Watts, P. C. et al. Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: Analysis of ‘neighbourhood size’ using a more precise estimator. Mol. Ecol. 16, 737–751 (2007).
Google Scholar
Hill, W. G. Estimation of effective population size from data on linkage disequilibrium. Genet. Res. 38, 209–216 (1981).
Google Scholar
Waples, R. S. Seed banks, salmon, and sleeping genes: Effective population size in semelparous, age-structured species with fluctuating abundance. Am. Nat. 167, 118–135 (2006).
Google Scholar
Waples, R. S. & Do, C. ldne: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).
Google Scholar
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
Google Scholar
Cavalli-Sforza, L. L., & Edwards, A. W. F. Phylogenetic analysis: Model and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).
Google Scholar
Source: Ecology - nature.com