in

Grazing intensity drives plant diversity but does not affect forage production in a natural grassland dominated by the tussock-forming grass Andropogon lateralis Nees

  • 1.

    IBGE. Instituto Brasileiro de Geografia e Estatística – Censo Agro 2017. IBGE | Censo Agro 2017, Dados preliminares https://censos.ibge.gov.br/agro/2017/ (2017).

  • 2.

    Boldrini, I. I. et al. Flora. In Biodiversidade dos Campos do Planalto das Araucárias 39–94 (2009).

  • 3.

    Iganci, J. R. V., Heiden, G., Miotto, S. T. S. & Pennington, R. T. Campos de Cima da Serra: The Brazilian subtropical highland Grasslands show an unexpected level of plant endemism. Bot. J. Linn. Soc. 167, 378–393 (2011).

    Article 

    Google Scholar 

  • 4.

    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Alhamad, M. N. & Alrababah, M. A. Defoliation and competition effects in a productivity gradient for a semiarid Mediterranean annual grassland community. Basic Appl. Ecol. 9, 224–232 (2008).

    Article 

    Google Scholar 

  • 6.

    Fedrigo, J. K. et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restor. Ecol. https://doi.org/10.1111/rec.12635 (2017).

    Article 

    Google Scholar 

  • 7.

    Mavromihalis, J. A., Dorrough, J., Clark, S. G., Turner, V. & Moxham, C. Manipulating livestock grazing to enhance native plant diversity and cover in native grasslands. Rangel. J. 35, 95–108 (2013).

    Article 

    Google Scholar 

  • 8.

    Bircham, J. S. & Hodgson, J. The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass Forage Sci. 38, 323–331 (1983).

    Article 

    Google Scholar 

  • 9.

    Sbrissia, A. F. et al. Defoliation strategies in pastures submitted to intermittent stocking method: Underlying mechanisms buffering forage accumulation over a range of grazing heights. Crop Sci. 58, 945–954 (2018).

    Article 

    Google Scholar 

  • 10.

    Jaurena, M. et al. Native grasslands at the core: A new paradigm of intensification for the Campos of Southern South America to increase economic and environmental sustainability. Front. Sustain. Food Syst. 5, 11 (2021).

    Article 

    Google Scholar 

  • 11.

    Cruz, P. et al. Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the South of Brazil. Rangel. Ecol. Manag. 63, 350–358 (2010).

    Article 

    Google Scholar 

  • 12.

    Benitez, C. A. & Fernandez, J. G. Espécies forrageiras de la pradera natural: Fenologia y respuesta a la frequência e severidad de corte (1970).

  • 13.

    Herve, A. M. B. & Valls, J. F. M. Genêro Andropogon L. (Gramineae) no Rio Grande do Sul. Anuario tecnico do Instituto de Pesquisas Zootecnicas Francisco Osorio (1980).

  • 14.

    Zanin, A. & Longhi-Wagner, H. M. Revisão de Andropogon (Poaceae – Andropogoneae) para o Brasil. Rodriguesia 62, 171–202 (2011).

    Article 

    Google Scholar 

  • 15.

    Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165 (1998).

    Article 

    Google Scholar 

  • 16.

    Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 350, 1177b (2015).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Connell, J. H. Diversity in tropical rain forests and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science 199, 1302–1310 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).

    Article 

    Google Scholar 

  • 19.

    Liu, J. et al. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J. Appl. Ecol. 52(4), 1053–1062 (2015).

    Article 

    Google Scholar 

  • 20.

    Ren, H., Schönbach, P., Wan, H., Gierus, M. & Taube, F. Effects of grazing intensity and environmental factors on species composition and diversity in typical Steppe of Inner Mongolia, China. PLoS ONE 7(12), e52180 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Sbrissia, A. F., Silva, S. C., Schmitt, D. & Duchini, P. G. Unravelling the relationship between a seasonal environment and the dynamics of forage growth in grazed swards. J. Agron. Crop Sci. 206, 630–639 (2020).

    Article 

    Google Scholar 

  • 22.

    Hernández-Lambraño, R. E., González-Moreno, P. & Sánchez-Agudo, J. Á. Towards the top: Niche expansion of Taraxacum officinale and Ulex europaeus in mountain regions of South America. Austral. Ecol. 42, 577–589 (2017).

    Article 

    Google Scholar 

  • 23.

    Pinto, L. F. M. et al. Dinâmica do acúmulo de matéria seca em pastagens de Tifton 85 sob pastejo. Sci. Agric. 58, 439–447 (2001).

    Article 

    Google Scholar 

  • 24.

    Duchini, P. G., Guzatti, G. C., Ribeiro Filho, H. M. N. & Sbrissia, A. F. Tiller size/density compensation in temperate climate grasses grown in monoculture or in intercropping systems under intermittent grazing. Grass Forage Sci. 69, 655–665 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Briske, D. D. & Anderson, V. J. Competitive ability of the bunchgrass Schizachyrium scoparium as affected by grazing history and defoliation. Vegetatio 103, 41–49 (1992).

    Google Scholar 

  • 26.

    Altesor, A., Oesterheld, M., Leoni, E., Lezama, F. & Rodriguez, C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. 179, 83–91 (2005).

    Article 

    Google Scholar 

  • 27.

    Lezama, F. et al. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J. Veg. Sci. 25, 8–21 (2014).

    Article 

    Google Scholar 

  • 28.

    Lattanzi, F. A. et al. 13C-labeling shows the effect of hierarchy on the carbon gain of individuals and functional groups in dense field stands. Ecology 93, 169–179 (2012).

    Article 

    Google Scholar 

  • 29.

    Roscher, C. et al. Functional composition has stronger impact than species richness on carbon gain and allocation in experimental grasslands. PLoS ONE 14(1), e0204715 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Wan, C. & Sosebee, R. E. Central dieback of the dryland bunchgrass Eragrostis curvula (weeping lovegrass) re-examined: The experimental clearance of tussock centres. J. Arid Environ. 46, 69–78 (2000).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Angassa, A. Effects of grazing intensity and bush encroachment on herbaceous species and rangeland condition in Southern Ethiopia. L. Degrad. Dev. 25, 438–451 (2014).

    Article 

    Google Scholar 

  • 32.

    Schultz, N. L., Morgan, J. W. & Lunt, I. D. Effects of grazing exclusion on plant species richness and phytomass accumulation vary across a regional productivity gradient. J. Veg. Sci. 22, 130–142 (2011).

    Article 

    Google Scholar 

  • 33.

    Chaneton, E. J. & Facelli, J. M. Disturbance effects on plant community diversity: Spatial scales and dominance hierarchies. Vegetatio 93, 143–155 (1991).

    Article 

    Google Scholar 

  • 34.

    Tow, P. G. & Lazenby, A. Competition and Succession in Pastures (CAB International, 2001). doi:https://doi.org/10.1079/9780851994413.0000.

  • 35.

    Briske, D. D. & Hendrickson, J. R. Does selective defoliation mediate competitive interactions in a semiarid savannah? A demographic evaluation. J. Veg. Sci. 9, 611–622 (1998).

    Article 

    Google Scholar 

  • 36.

    Baer, S. G., Blair, J. M. & Collins, S. L. Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie. Ecol. Monogr. 86, 94–106 (2016).

    Article 

    Google Scholar 

  • 37.

    Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728 (2013).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Pallarés, O. R., Berretta, E. J. & Maraschin, G. The South American Campos ecosystem BT—Grasslands of the World. Grasslands of the World 1–49 (2005).

  • 39.

    Allen, V. G. et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 66, 2–28 (2011).

    Article 

    Google Scholar 

  • 40.

    Zanini, G. D., Santos, G. T., Schmitt, D. & Padilha, D. A. Distribuição de colmo na estrutura vertical de pastos de capim Aruana e azevém anual submetidos a pastejo intermitente por ovinos. Ciênc. Rural 42, 882–887 (2012).

    Article 

    Google Scholar 

  • 41.

    Carvalho, P. C. F. Harry Stobbs Memorial Lecture: Can grazing behaviour support innovations in grassland management?. Trop. Grassl. Forrajes Trop. 1, 137–155 (2013).

    Article 

    Google Scholar 

  • 42.

    Barthram, G. T. Experimental techniques: The HFRO sward stick. In The Hill Farming Research Organization Biennial Report 1984/1985 29–30 (HFRO, 1985).

  • 43.

    Haydock, K. P. & Shaw, N. H. The comparative yield method for estimating dry matter yield of pasture. Aust. J. Exp. Agric. 15, 663–670 (1975).

    Google Scholar 

  • 44.

    Williams, R. J. Gap dynamics in subalpine heathland and grassland vegetation in south-eastern Australia. J. Ecol. 80, 343–352 (1992).

    Article 

    Google Scholar 

  • 45.

    Derner, J. D., Briske, D. D. & Polley, H. W. Tiller organization within the tussock grass Schizachyrium scoparium: A field assessment of competition–cooperation tradeoffs. Botany 90, 669–677 (2012).

    Article 

    Google Scholar 

  • 46.

    Mueller-Dombois, D. & Ellenberg, D. Aims and methods of vegetation ecology. In Community Sampling: The Relevé Method 45–66 (1974).

  • 47.

    Tothill, J. C., Hargreaves, J. N. G., Jones, R. M. & McDonald, C. K. Botanal—A comprehensive sampling and computing procedure for estimating pasture yield and composition. 1. Field sampling. Trop. Agron. Tech. Mem. 78, 1–24 (1992).

    Google Scholar 

  • 48.

    ’t Mannetje, L. Measuring biomass of grassland vegetation. In Field and Laboratory Methods for Grassland and Animal Production Research 151–177 (CABI, 2000). doi:https://doi.org/10.1079/9780851993515.0151.

  • 49.

    Oksanen, F.J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P. et al. vegan: Community Ecology Package. R package version 2.5-7. (2020). https://CRAN.R-project.org/package=vegan.

  • 50.

    Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN: 92-9059-179-X (2005).

  • 51.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2021). https://www.R-project.org/.

  • 52.

    Watkins, A. J. & Wilson, J. B. Plant community structure, and its relation to the vertical complexity of communities: dominance/diversity and spatial rank consistency. Oikos 70, 91–98 (1994).

    Article 

    Google Scholar 

  • 53.

    Bates, D., Mächler, M., Zurich, E., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 54.

    Sbrissia, A. F., Zanella, P. G., Pinto, C. E., Baldissera, T. C. & Garagorry, F. C. Natural grasslands experiment – 2015 – 2017 – Pablo. figshare. https://doi.org/10.6084/m9.figshare.14055419.v1 (2021).


  • Source: Ecology - nature.com

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism